SESSION 1997

Concours : EXTERNE Section : Mathématiques

PREMIERE EPREUVE ECRITE D'ADMISSIBILITE

Première composition

(Coefficient 2,5 : - Durée : 5 heures)

L'usage de la calculatrice est autorisé.

I.1. Espace vectoriel.

On considère l'ensemble E des fonctions réelles f continues sur $]0,+\infty[$, telle que, $\int_0^{+\infty} \phi(t) \cdot f^2(t) dt$ existe, où ϕ est la fonction définie sur $]0,+\infty[$, par $\phi(t)=e^{-t} \cdot t^{x-1}$ et x est un réel strictement positif fixé.

- I.1.1. Montrer que la fonction réelle f, définie sur $]0, +\infty[$, par f(x) = 1, appartient à E.
- 1.1.2. Montrer que E est un espace vectoriel réel.

On pose, pour tout f_1, f_2 dans $E: (f_1, f_2) = \int_0^{+\infty} \phi(t). f_1(t). f_2(t) dt$.

- I.1.3. Montrer qu'on définit ainsi un produit scalaire sur E.
- I.1.4. Montrer que : $|(f_1, f_2)|^2 \le (f_1, f_1)(f_2, f_2)$.

Soit f une fonction réelle définie sur $]0,+\infty[$, strictement positive, deux fois dérivable sur $]0,+\infty[$.

I.1.5. Montrer que $\ln \circ f$ est une fonction convexe si et seulement si $\forall x > 0$, f(x), $f''(x) - f'^{2}(x) \ge 0$.

I.2. Propriété d'une Equation fonctionnelle.

On considère l'équation fonctionnelle : f(x+1) - f(x) = a(x), où a est une fonction fixée définie sur $]0, +\infty[$, croissante sur $]0, +\infty[$, telle que $\lim_{x \to \infty} a(x) = 0$.

Soient f et g deux fonctions décroissantes sur $]0,+\infty[$, vérifiant cette équation fonctionnelle. On pose h=f-g.

- I.2.1. Montrer que h est périodique.
- 1.2.2. Montrer que : pour tout $x \ge 1$, il existe un entier n > 0, tel que $|h(x) h(n+1)| \le -a(n)$ et que pour tout entier naturel p, $|h(x) h(n+1)| \le -a(n+p)$.
- 1.2.3. Montrer que h est constante sur $]0,+\infty[$.

Partie II: Résolution du problème fonctionnel P1.

Soit le problème fonctionnel
$$P_1 \begin{cases} \text{il existe une fonction numérique f, définie sur }]0,+\infty[,\text{ vérifiant :} \\ \forall x>0, \ f(x+1)-f(x)=-\ln(x) \\ \text{f est concave} \\ f(1)=0 \end{cases}$$

Sur $]0,+\infty[$, on définit la suite de fonctions $(u_n)_{n\geq 1}$ par :

$$u_1(x) = \ln(x) \text{ et } \forall n \ge 2, \ u_n(x) = \ln\left(1 + \frac{x-1}{n}\right) + (x-1) \cdot \ln\left(1 - \frac{1}{n}\right)$$

II.1. Calcul et Propriétés de U.

- II.1.1 Montrer que la série $\sum_{n\geq 1} u_n$ converge simplement sur $]0,+\infty[$; on notera U sa somme.
- II.1.2. Montrer que la série de fonctions de terme général u_n'' , $n \ge 1$ est uniformément convergente sur tout compact de $]0,+\infty[$
- II.1.3. Montrer que la série de terme général u'_n , $n \ge 1$, est convergente pour au moins un réel x, x > 0.
- II.1.4. Montrer que la fonction $\sum_{n=1}^{+\infty} u_n' \operatorname{est} C^1 \operatorname{sur} \left]0,+\infty\right[$.
- II.1.5. Montrer que U est C^2 sur $]0,+\infty[$.

II.1.6. Etablir que :
$$\forall x > 0$$
, $U(x) = \lim_{n \to +\infty} \ln \frac{x \cdot (x+1) \cdots (x+n-1)}{n! n^{x-1}}$.

II.2. Résolution de P₁.

- II.2.1. Montrer que U est une solution du problème fonctionnel P₁.
- II.2.2. En déduire les solutions monotones de : $f(x+1) f(x) = \frac{-1}{x}$, x > 0
- II.2.3. Montrer que U est la seule solution dérivable sur $]0,+\infty[$ du problème P_1 .

Partie III: Résolution du Problème Fonctionnel P2.

Soit le problème fonctionnel

$$P_{2} \begin{cases} \text{il existe une fonction numérique } f, \ f > 0, \ \text{définie sur }]0, +\infty[, \text{ vérifiant } : \\ \forall x > 0, f(x+1) = x \cdot f(x) \\ \ln \circ f \text{ est convexe} \\ f(1) = 1 \end{cases}$$

III.1. Propriétés de F.

On pose, pour tout x > 0, $F(x) = \int_0^{+\infty} e^{-t} dt$ et pour tout entier naturel n, strictement positif.

$$F_n(x) = \int_{\frac{1}{n}}^n e^{-t} \cdot t^{x-1} dt$$

- III.1.1. Montrer que, pour tout n > 0, F_n est continue sur $]0, +\infty[$
- III.1.2. Montrer que la suite de fonctions $(F_n)_{n\geq 1}$ converge uniformément sur tout compact de $]0,+\infty[$.
- III.1.3. En déduire que F est continue sur $]0,+\infty[$.

On pose
$$\Phi(x) = \int_0^{+\infty} \frac{\delta}{\delta x} (e^{-t} \cdot t^{x-1}) dt$$
 où $\frac{\delta}{\delta x}$ désigne la fonction dérivée par rapport à x.

- III.1.4. Montrer que Φ est définie sur $]0,+\infty[$.
- III.1.5. Montrer que, pour tout n > 0, F_n est dérivable sur $]0, +\infty[$.
- III.1.6. Montrer que, sur tout compact de]0,+∞[, la suite des fonctions dérivées (F'), converge uniformément vers Φ.
- III.1.7. En déduire que F est C^1 sur $]0,+\infty[$. On admettra que F est également C^2 , et que F" s'obtient par dérivation sous le signe intégral.

III.2. Résolution du Problème P2.

- III.2.1. Montrer que, pour tout x > 0, F(x+1) = x.F(x) et F(1) = 1.
- III.2.2. Montrer que ln o F est convexe. (on pourra utiliser I.1.4 et I.1.5).

III.3. Etude de F.

- III.3.1. Etudier le sens de variation de F'.
- III.3.2. Montrer qu'il existe un réel $\alpha \in]1,2[$, vérifiant $F'(\alpha) = 0$
- III.3.3. En déduire le sens de variation de F.
- III.3.4. Montrer que $F(x) \sim \frac{1}{r}$, lorsque x tend vers 0.
- III.3.5. En déduire la limite de F lorsque x tend vers 0.
- III.3.6. Déterminer $\lim F(x)$.
- III.3.7. Donner l'allure de la courbe représentative de F, dans un plan muni d'un repère orthogonal.

Partie IV: Equivalence.

- IV.1. Montrer l'équivalence des problèmes fonctionnels P₁ et P₂.
- IV.2. Montrer que $F(x) = \lim_{n \to +\infty} \frac{n^{x-1} \cdot n!}{x(x+1) \cdots (x+n-1)}$

Partie V: Une autre intégrale pour F.

Le but de cette partie est de démontrer que : pour tout x > 0, $F(x) = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n dt$ (R)

V. 1. Convergence d'une suite.

On pose, pour tout entier naturel n, n > 0, et tout $t \in [0, n]$, $v_n(t) = \left(1 - \frac{t}{n}\right)^n - e^{-t}$.

- V.1.1. Etudier les variations des fonctions v_n , $n \ge 1$. Dans le cas n > 1, on sera amené à étudier sur [0, n] la fonction auxiliaire $h_n(t) = \ln\left(1 \frac{t}{n}\right) + \frac{t}{n-1}$.
- V.1.2. Montrer que, pour tout entier n strictement positif, et tout t de [0, n]: $\left(1 \frac{t}{n}\right)^n \le e^{-t}$.
- V.1.3. Montrer que, pour tout entier $n \ge 1$, il existe un réel $\alpha_n \in [1, n]$ tel que $\sup_{t \in [0:n]} |v_n(t)| = \frac{\alpha_n e^{-\alpha_n}}{n}$.
- V.1.4. En déduire que, pour tout réel A >0, la suite de fonctions $(v_n)_{n\geq 1}$ converge uniformément vers 0 sur [0, A].

V.2. Convergence de la suite d'intégrales.

On se donne, dans les trois questions suivantes, un réel arbitraire $\varepsilon > 0$ et x est un réel strictement positif fixé.

V.2.1. Montrer qu'il existe alors un réel A > 0 vérifiant : $\int_{A}^{+\infty} t^{x-1} \cdot e^{-t} dt < \varepsilon$.

Soit n₀ un entier naturel strictement supérieur à A.

- V.2.2. Montrer que, pour tout $n \ge n_0$, $0 \le \int_{-1}^{n} \left(1 \frac{t}{n}\right)^n . t^{x-1} dt \le \varepsilon$.
- V.2.3. Montrer que, pour tout $n \ge n_0$, $\left| \int_0^{+\infty} t^{x-1} e^{-t} dt \int_0^n \left(1 \frac{t}{n} \right)^n . t^{x-1} dt \right| \le 2 . \varepsilon + \frac{K}{n} . \int_0^A t^{x-1} dt$ où K est un réel à préciser.
- V.2.4. En déduire la relation (R).

V.3. Calcul de l'intégrale de la relation (R).

- V.3.1. Montrer que: $\forall x > 0$, $F(x) = \lim_{n \to +\infty} n^x \cdot \int_0^1 (1-t)^n \cdot t^{x-1} dt$
- V.3.2. Calculer $\int_0^1 (1-t)^n . t^{x-1} dt$ en fonction de n et de x.
- V.3.3. En déduire une nouvelle expression de F.

Partie VI: Applications.

VI.1. Densité de probabilité.

Soit n un entier naturel strictement positif et S_n une fonction réelle définie sur $\mathbb R$ par :

$$S_n(t) = \begin{cases} A(n) \cdot \left(\frac{t}{2}\right)^{\frac{n}{2}-1} \cdot e^{-\frac{t}{2}} & \text{si } t > 0 \\ 0 & \text{si } t \le 0 \end{cases}$$
 où A est fonction de n.

VI.1.1 Montrer que,
$$S_n$$
 est une densité de probabilité si et seulement si $A(n) = \frac{1}{2.F(\frac{n}{2})}$

Soit X une variable aléatoire continue de densité S_{n} .(n fixé, n > 0)

VI.1.2. Calculer son espérance et sa variance.

Soit U une variable aléatoire normale centrée réduite.

VI.1.3. Déteminer la loi de la variable aléatoire U² en exprimant sa densité en fonction de S_n, où n est un entier à préciser.

VI.I.4. Montrer que :
$$F(\frac{1}{2}) = \sqrt{\pi}$$
.

n est un entier naturel strictement positif.

Soient $X_1, X_2, ..., X_n$ n variables aléatoires indépendantes, définies sur le même espace, de même loi normale centrée réduite.

Posons:
$$Z = \sum_{k=1}^{n} X_k^2$$
.

VI.1.5. Calculer l'espérance et la variance de Z.