Modélisation du trafic routier

François Sauvageot

5 mai 2002

1 Position du problème

L'objet de l'étude est de modéliser le trafic routier sur une portion de route sans intersection, modélisée par un intervalle [0,L]. On introduit une loi de conservation et une relation empirique entre le flux de véhicules φ et leur densité χ . Grâce à ce modèle, on peut donner une équation aux dérivées partielles vérifiée par la densité de véhicules. Il devient alors possible d'estimer une vitesse optimale sur la route considérée et d'étudier la vitesse de propagation d'un bouchon (dû à un accident par exemple) en fonction de la densité de véhicules à l'instant de l'évènement.

Dans cette étude, on va surtout s'intéresser à la modélisation mathématique du phénomène plus qu'aux estimations qui en dérivent (celles qu'on vient d'évoquer). Le premier élément à modéliser est la relation empirique $\varphi = f(\chi)$ décrivant le comportement des conducteurs confrontés à une certaine densité de véhicules, i.e. décrivant la vitesse moyenne (φ/χ) adoptée lors d'un certain trafic (χ) . Cette relation est obtenue à partir d'observations ponctuelles, sujettes à erreur, et il est raisonnable d'adopter une approximation de f par la méthode des moindres carrés. Néanmoins on a besoin d'un certain nombre de propriétés de f afin de refléter la réalité et de garantir le comportement de $\chi(x,t)$ déduit de l'équation aux dérivées partielles. Ici x est la variable d'espace $(x \in [0,L])$ et t la variable temporelle $(t \in \mathbf{R}_+)$.

La densité est un réel positif, inférieur à une certaine densité χ_{max} correspondant à une impossibilité de mouvement. La fonction f est donc définie sur l'intervalle $[0,\chi_{max}]$, nulle aux bornes : sans véhicule ou lorsqu'ils se touchent tous, il n'y a pas de circulation.

De plus φ/χ représente la vitesse instantanée des véhicules (au point x et à l'instant t). C'est a priori une fonction décroissante de χ . Puisque φ/χ est la pente entre le point (0, f(0)) et le point $(\chi, f(\chi))$, il semble raisonnable, afin de garantir cette décroissance, d'imposer la concavité de f.

Au final on cherche donc, à partir de données observées, à reconstituer une fonction sur un intervalle $[0,\chi_{max}]$ qui soit dérivable, nulle aux bornes et concave. La méthode des moindres carrés pour donner une approximation polynomiale rencontre alors quelques problèmes : la concavité est facile à obtenir en degré petit, mais la nullité aux bornes ne s'obtient qu'en degré élevé. En particulier, plus l'approximation est bonne, plus on est sûr de ne pas obtenir une approximation concave.

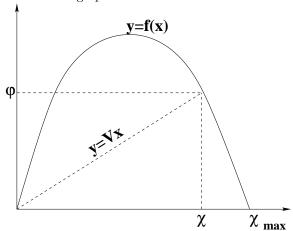
2 Graphe fondamental

On modélise une portion de route (à sens unique et sans croisement ni bifurcation) :

- 1. x désigne la distance par rapport au début de la route ; c'est un réel variant entre 0 et une certaine quantité positive L
- $2.\ t$ représente le temps ; c'est un réel positif.
- 3. V(x;t) est la vitesse moyenne des véhicules au point x et à l'instant t (s'il y a plusieurs files, on fait la moyenne des vitesses de chacun des véhicules); c'est un réel positif.
- 4. $\varphi(x;t)$ est le nombre de véhicules par unité de temps passant au point x et à l'instant t (on appelle également cette quantité le flux moyen instantané); c'est un réel positif.
- 5. $\chi(x;t)$ est le nombre de véhicules par unité de longueur au point x et à l'instant t (on appelle également cette quantité la densité moyenne instantanée); c'est un réel compris entre 0 et χ_{max} .

Puisque $\varphi dt = \chi dx$, on a en fait $\chi V = \varphi$.

Les observations permettent d'obtenir une relation empirique entre les quantités φ et χ : $\varphi = f(\chi)$ où f est une fonction de $[0; \chi_{max}]$ dans \mathbf{R} concave, régulière (une ou deux fois dérivables), vérifiant $f(0) = f(\chi_{max}) = 0$. Les deux lois et se résument dans le graphe fondamental :



La relation fondamentale lie le débit φ en véhicules/heure et la densité χ en véhicules/km (de sorte que la vitesse φ/χ est exprimée en km/heure). Chaque point de cette courbe caractérise une situation de trafic, et la pente de la droite qui le joint à l'origine donne la vitesse moyenne des véhicules.

Pour les besoins de nos applications numériques, la fonction $f:\chi\mapsto\varphi$ sera approchée par un polynôme. On dispose de tables de données expérimentales caractérisant chaque portion de route. Une manière efficace d'approcher f est d'ajuster un polynôme, éventuellement sous des contraintes exprimant la concavité, par une méthode de moindres carrés.

Remarque : d'un point de vue pratique, il n'est pas toujours très rationnel d'utiliser la densité pour spécifier l'état à l'entrée de la portion de route, mais il est possible de la déduire à l'aide du flux φ qui s'obtient par un simple comptage.

3 Fonctions concaves

Le comportement d'une route est modélisé par une réponse à une densité donnée par un certain flux. On l'étudie en se donnant un certain nombre d'observations. Ainsi on a m+1 observations $(\chi_k, \varphi_k)_{0 \le k \le m}$ et on veut en déduire une relation $\varphi = f(\chi)$ où f est une fonction dérivable sur $[0, \chi_{max}]$ ayant les propriétés suivantes :

- 1. $f(0) = f(\chi_{max}) = 0$,
- 2. f est concave sur $[0; \chi_{max}]$.

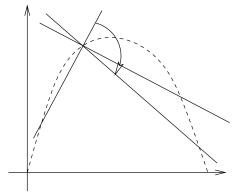
Rappelons qu'une fonction concave sur $[0; \chi_{max}]$ est une fonction vérifiant, pour x et y quelconque dans $[0; \chi_{max}]$ et λ dans [0; 1]

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
.

En d'autres termes le graphe de f est au-dessus de ses cordes.

Une telle fonction est dérivable à gauche et à droite en tout point de $]0; \chi_{max}[$ et ces deux dérivées, notées respectivement f'_g et f'_d , sont des fonctions décroissantes sur $]0; \chi_{max}[$. De plus, pour tout x dans $]0; \chi_{max}[$, on a $f'_g(x) \geq f'_d(x)$. En fait, lorsque f est dérivable (ce qui se traduit par $f'_g = f'_d$), la concavité de f est équivalente à la décroissance de f'. Pour cette raison, lorsque f est deux fois dérivable, la concavité de f est équivalente à la négativité de f''.

Une autre propriété remarquable des fonctions concaves est que la pente d'une corde tracée sur la graphe est une fonction décroissante de chacune des extrémités.



En termes mathématiques, en fixant x dans $[0; \chi_{max}]$, la fonction $\delta_{f,x}$ définie sur $[0; \chi_{max}] \setminus \{x\}$ par

$$\delta_{f,x}(y) = \frac{f(y) - f(x)}{y - x}$$

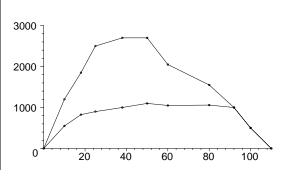
est une fonction décroissante. Les limites à droite et à gauche de $\delta_{f,x}$ en x sont, quand elles existes, les dérivées à droite et à gauche de f en x.

Puisque, pour χ dans $]0; \chi_{max}], f(\chi)/\chi$ n'est rien d'autre que $\delta_{f,0}(\chi)$ et représente la vitesse V, on impose la concavité de f de façon à garantir la décroissance de $\delta_{f,0}$. Remarquons que cette dernière propriété, conjointe au fait que $f(\chi_{max}) = 0$ entraı̂ne en particulier que $\delta_{f,0}$ est positive sur $]0; \chi_{max}]$ et donc la positivité de f sur $[0, \chi_{max}]$ (ce qui est une condition qu'il est naturel et nécessaire d'imposer).

4 Approximation au sens des moindres carrés

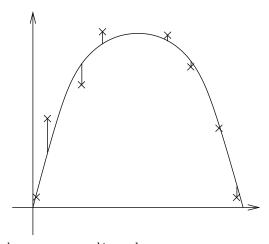
Voici deux exemples de routes (une autoroute et une route de campagne), i.e. deux exemples de données $(\chi_k, \varphi_k)_{0 \le k \le m}$, avec m = 10:

	Route 1	Route 2
χ	φ	φ
0	0	0
10	1200	550
18	1850	825
25	2500	900
38	2700	1000
50	2700	1100
60	2050	1050
80	1550	1060
92	1000	1000
100	500	500
110	0	0



Se pose maintenant la question de savoir comment on mesure la pertinence de l'approximation. Le procédé des moindres carrés consiste à minimiser la somme des carrés des écarts verticaux entre la fonction cherchée (ici un polynôme ayant un certain nombre de propriétés) et les données observées, i.e. à trouver

$$\min_{P} R(P; \varphi, \chi) \qquad \text{où} \qquad R(P; \varphi, \chi) = \sum_{k=0}^{m} (\varphi_k - P(\chi_k))^2 \ .$$



Justifions quelque peu cette démarche.

Une première interprétation consiste à supposer que les observations φ_k sont mesurées, avec certaines erreurs de mesure, tandis que les données χ_k sont, elles, dépourvues d'erreur de mesure ou, au pire, entachées d'erreurs négligeables par rapport à celles apparaissant dans la mesure de φ_k . On modélise ce phénomène en écrivant que φ est une fonction aléatoire de χ . Plus précisément, on modélise les erreurs de mesure par une loi gaussienne avec l'idée que les erreurs sont dues à la somme d'une infinité de petites erreurs et qu'une telle somme infinie, de par la loi des grands nombres, suit à peu de chose près une loi gaussienne. Autrement

dit, supposons que la valeur «vraie» de φ , lorsque χ vaut χ_k , soit $P(\chi_k)$ et supposons que l'on mesure φ avec une erreur, de sorte que la probabilité de mesurer φ dans un certain intervalle $[y, y + \Delta y]$ soit donné par la loi de Gauß:

$$P(y \leq \varphi \leq y + \Delta y) = \int_y^{y + \Delta y} e^{-(x - P(\chi_k))^2/2\sigma^2} \frac{dx}{\sqrt{2\pi}\sigma} \simeq e^{-(y - P(\chi_k))^2/2\sigma^2} \frac{\Delta y}{\sqrt{2\pi}\sigma} \ .$$

De la sorte, la probabilité de mesurer, à Δy près, successivement $(\varphi_0, \dots, \varphi_m)$ pour des valeurs de χ égales à (χ_0, \dots, χ_m) est donnée par

$$\prod_{k=0}^{m} \left(e^{-(\varphi_k - P(\chi_k))^2 / 2\sigma^2} \frac{\Delta y}{\sqrt{2\pi}\sigma} \right) \quad \text{soit} \quad \left(\frac{\Delta y}{\sqrt{2\pi}\sigma} \right)^{m+1} e^{-\frac{1}{2\sigma^2} R(P;\varphi,\chi)}$$

et cette probabilité est donc maximale lorsque $R(P; \varphi, \chi)$ est minimal. Par conséquent minimiser $R(P; \varphi, \chi)$ c'est chercher la fonction (ici P) telle que ce que l'on a observé soit en fait l'événement de probabilité maximale; on parle de maximum de vraisemblance.

Montrons comment, en cherchant P de degré au plus 1, cette démarche est également une minimisation statistique. Lorsque P est de degré au plus 1, on cherche en fait à placer les observations (χ_k, φ_k) sur une droite (nommée droite de régression de φ par rapport à χ ou encore droite des moindres carrés). Autrement dit on cherche une relation $\varphi = a\chi + b$ qui soit la meilleure possible. Introduisons $Y = \varphi - (a\chi + b)$. D'après l'inégalité de Chebichev, on a, en notant $\mu(Y)$ et $\sigma(Y)$ les moyennes et variances de Y et \mathbf{P} la probabilité :

$$\mathbf{P}(|\varphi - (a\chi + b) - \mu(Y)| \ge \varepsilon) \le \frac{\sigma^2(Y)}{\varepsilon^2}$$
.

Par conséquent Y est, en probabilité, le plus petit possible à condition que $\mu(Y)$ soit nul et $\sigma(Y)$ le plus petit possible. Comme

$$\mu(Y) = \mu(\varphi) - a\mu(\chi) - b$$

on peut toujours choisir b tel que, étant donné $a,\,\mu(Y)$ soit nul. Dans ces conditions, on a

$$\sigma^2(Y) = \mu(Y^2) = R(aX + b; \varphi, \chi)$$

et on peut vérifier que la minimisation de $\sigma^2(Y)$ est équivalent à minimiser $R(aX+b;\varphi,\chi)$ par rapport à (a,b).

Plus généralement, on a

$$R(P; \varphi, \chi) = \sigma^{2}(\varphi - P(\chi)) + \mu^{2}(\varphi - P(\chi)).$$

De plus, on cherche en fait à minimiser simultanément les deux termes du membre de droite. Par «indépendance» de ces termes (i.e. les équations auxquelles chacune des minimisations conduisent sont linéairement indépendantes, par rapport aux coefficients de P), cette minimisation simultanée est équivalente à minimiser la somme (car les deux termes sont positifs), i.e. $R(P; \varphi, \chi)$.

Par conséquent la méthode des moindres carrés fournit un polynôme P de sorte que, pour tout ε strictement positif, la probabilité que φ diffère de $P(\chi)$ de plus de ε est minimale, selon l'estimation donnée par l'inégalité de Chebichev.

5 Mise en place des données de modélisation

Tout au long de cet exposé, on donne le code Maple 6 pour traiter les exemples. On peut bien entendu le traduire dans une autre version de Maple ou en MuPad.

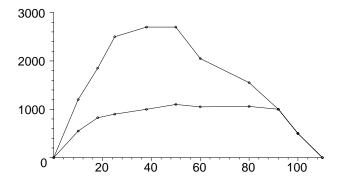
On commence par charger les bibliothèques d'algèbre linéaire et graphique. La variable χ contient les abscisses des données observées, m+1 leur nombre. On entre alors deux «routes», i.e. les valeurs de φ correspondant à χ pour deux modélisations. La variable nb représente le nombre de routes modélisées.

On calcule ensuite χ_{max} et on définit la variable xrange comme l'intervalle $[0; \chi_{max}]$. On l'utilise pour normaliser l'affichage des graphiques. De même l'intervalle yrange s'étend de 0 à la valeur maximale de φ sur les routes modélisées.

On passe ensuite à des problèmes de visualisation. La procédure dup permet de répéter une liste s de sorte à donner une liste de longueur m. On crée ainsi les listes clist et slist pour afficher les graphiques simultanément avec des options de couleur et/ou de style différentes. Dans l'exemple, on suppose avoir la couleur et on adopte une alternance de quatre couleurs, sans jamais changer le style de tracé (on garde une ligne pleine).

Les variables liste[1] et liste[2] contiennent les points des deux tracés. Enfin le tracé des deux routes est stocké dans la variable dplot puis affiché. On affiche en fait deux fois chaque tracé, une fois on ne met que les points (symbolisés par un cercle), une autre fois on trace une ligne polygonale.

```
> with(linalg): with(plots):
> \chi := [0, 10, 18, 25, 38, 50, 60, 80, 92, 100, 110]:
>m := nops(\chi)-1;
>route1 := [0, 1200, 1850, 2500, 2700, 2700, 2050, 1550, 1000, 500, 0]:
>route2 := [0, 550, 825, 900, 1000, 1100, 1050, 1060, 1000, 500, 0]:
> nb := 2;
> ChiMax := max(op(\chi)): xrange := 0..ChiMax;
> yrange := seq(0..1.2*max(op(route||k)),k=1..nb);
> dup := proc(m,s) local i,d; d := floor(m/nops(s))+1; [seq(op(s),
 i=1..d]; end proc:
> couleur := blue, red, yellow, green : ligne := 1 :
> clist := dup(m,[couleur]): slist :=dup(m,[ligne]):
> liste := seq( [seq( [\chi[i],route||k[i]], i=1..m) ], k=1..nb):
>dplot := [seq( plot([liste[k],liste[k]], xrange, yrange[k],
 symbol=circle, style=[point, line], colour=clist[k]), k=1..nb)]:
> display(dplot);
```



6 Approximation polynomiale

Voyons maintenant comment ajuster les données par des polynômes.

Soit n un entier naturel; on note E_n l'espace vectoriel réel des polynômes à coefficients réels de degré au plus n. C'est un espace vectoriel de dimension n+1, de base canonique $(1, X, \ldots, X^n)$.

Soit Φ_n l'application linéaire de E_n dans \mathbf{R}^{m+1} qui à un polynôme P associe $(P(\chi_k))_{0 \le k \le m}$. La matrice $A_{m,n}$ de Φ_n relative aux bases canoniques de E_n et \mathbf{R}^{m+1} est

$$\begin{pmatrix} 1 & \chi_0 & \cdots & \chi_0^n \\ 1 & \chi_1 & \cdots & \chi_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \chi_m & \cdots & \chi_m^n \end{pmatrix}.$$

En supposant (ce que nous ferons) les données $(\chi_k)_{0 \le k \le m}$ toutes distinctes, cette matrice est de rang $\min(m+1,n+1)$. Par conséquent si n est inférieur ou égal à m, Φ_n est injective; si n est supérieur à m, Φ_n est surjective; enfin si n = m, Φ_n est bijective.

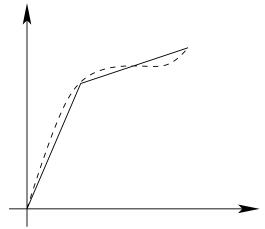
Autrement dit, si n est au moins égal à m, il existe un polynôme P tel que $P(\chi_k) = \varphi_k$ pour tout entier k entre 0 et m.

Notons P_m l'unique polynôme de degré au plus m vérifiant la condition précédente; P_m est appelé polynôme interpolateur de Lagrange. On a

$$P_m = \sum_{k=0}^m \varphi_k \prod_{j \neq k} \frac{X - \chi_j}{\chi_i - \chi_j} .$$

Mais, bien entendu, ce polynôme n'a aucune raison d'être concave et ce même si l'interpolation linéaire par morceaux des données observées est concave.

Prenons un exemple : $(\chi_k)_{0 \le k \le 3} = (0, 1, 2, 3)$ et $(\varphi_k)_{0 \le k \le 3} = (0, 7, 8, 9)$. Les pentes successives entre deux observations sont 7, 1 et 1, i.e. sont décroissantes. L'approximation linéaire par morceaux de ces données est donc concave (mais pas dérivable). Néanmoins l'approximation polynomiale de degré 3 est donnée par le polynôme $X^3 - 6X^2 + 12X$, ou encore $(X-2)^3 + 8$, dont la dérivée seconde est 6(X-2) qui n'est pas négative sur [0;3]. Par conséquent $X^3 - 6X^2 + 12X$ n'est pas concave sur [0;3].



Pour $n \geq m$, la quantité $R(P; \varphi, \chi)$ est minimale lorsque P diffère de P_m par un multiple de $(X - \chi_0) \cdots (X - \chi_m)$. Par ailleurs, pour n inférieur ou égal à m, la formule

$$||P|| = \sqrt{\sum_{i=0}^{m} P(\chi_i)^2}$$

définit une norme sur E_n et on a $R(P;\varphi,\chi)=||P-P_m||^2$. Par conséquent il existe un unique polynôme P_n de E_n tel que

$$R(P_n;\varphi,\chi) = R_{n,\varphi,\chi} = \min_{P \in E_n} R(P;\varphi,\chi) = \min_{P \in E_n} ||P - P_m||^2 ,$$

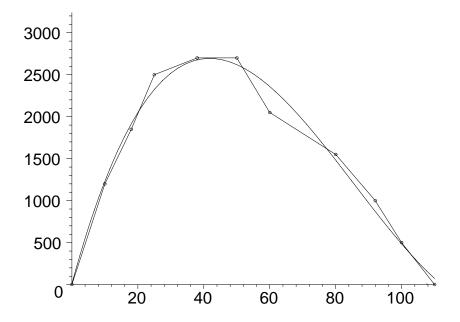
à savoir la projection orthogonale de P_m sur E_n .

On calcule P_n à partir des données de la façon suivante. Soit $A=A_{m,n}$ la matrice introduite précédemment et A^* sa transposée (la notation représente le fait que l'on considère $A^*_{m,n}$ comme la matrice de l'application linéaire adjointe de Φ_n). Les espaces vectoriels Im(A) et $Ker(A^*)$ sont orthogonaux. Soit, par ailleurs, Y le vecteur colonne $(\varphi_k)_{0 \le k \le m}$. Si la projection orthogonale de Y sur Im(A) est égale à AX, alors Y=AX+X' avec $A^*X'=0$. Par conséquent $A^*AX=A^*Y$. De plus $Ker(A^*A)=Ker(A)$ et donc A^*A est injective puisque $n \le m$. Par un critère de dimension A^*A est bijective, donc inversible. Si on note $X=(A^*A)^{-1}A^*Y=(a_j)_{0 \le j \le n}$, alors le polynôme P_n cherché est égal à $a_0+a_1X+\ldots+a_nX^n$.

Sur l'exemple de la route 1, la méthode des moindres carrés donne par exemple, en degré 3, le polynôme

$$P_3(X) = 11.27 + 143.9X - 2.279X^2 + 0.008866X^3$$

qui ne s'annule pas en χ_{max} (ici 110) et qui n'est pas concave, ainsi qu'on peut le vérifier sur le graphique ci-dessous :



François Sauvageot

7 Calcul des approximations sans contrainte

On applique la formule donnée dans le texte pour calculer les polynômes donnant l'approximation au sens des moindres carrés. La procédure MC calcule le polynôme approcimateur pour la route k en degré n. En degré supérieur à m, on calcule le polynôme interpolateur de Lagrange. La procédure MC utilise la fonction linsolve de la bibliotèque d'algèbre linéaire.

Par la suite on stocke dans PolMCn la suite des (deux) polynômes approximateurs pour chacune de routes, en degré n. Les graphiques correspondants sont créés dans un couple et sauvegardés dans les variables MCplotn.

On finit par affiche la suite des polynômes approximateurs par route, grâce à la fonction d'animation des graphiques.

```
>MC := proc(k,n) global \chi; local A, Y, a, P, i; if n > m then n := m; end if; A := matrix(m+1,n+1, [seq( [seq(\chi[i]\hat{j}, j=0..n)], i=1..m+1)]); Y := vector(m+1, route||k); a := linsolve(transpose(A)&*A, transpose(A)&*Y); P := sum(a[i+1]*xî, i=0..n); end proc : > for n from 0 to m do PolMC||n := seq(MC(k,n), k=1..nb) end do : > for n from 0 to m do MCplot||n := seq(display([dplot[k], plot(PolMC||n[k], x=xrange, yrange[k], colour=clist[n+1])]), k=1..nb) end do : > anime := proc(k) local n; display( [seq(MCplot||n[k], n=0..m-1)], insequence=true); end proc : > anime(1) : anime(2) :
```

On constate sur les graphiques que les polynômes approximateurs ne sont pas toujours concaves et ne s'annulent pas toujours en 0 et χ_{max} . Pour le vérifier, on met en place des procédures de tests. On commence par définir une précision, de façon à avoir des tests pas trop contraignants. On va donc tester si $|P(0)| < \varepsilon$ et si $P(\chi_{max}) < \varepsilon$. En rapport avec les données, on choisit $\varepsilon = 10$.

Les procédures test_0 et test_max testent chacune ces conditions pour la route k, avec par défaut la tolérance ε .

```
> \varepsilon :=10;

> test_0 := proc(k) local t,n,e; if nargs = 1 then e := \varepsilon else

e := args[2] end if; t := NULL; for n from 0 to m do if

evalb(abs(subs(x=0, PolMC||n[k])) <= e) then t := t, n; end if;

end do; [t]; end proc :

> seq(test_0(k), k=1..nb);

[7, 8, 9, 10], [4, 5, 6, 7, 8, 9, 10]

> test_max := proc(k) local t, n, e; if nargs = 1 then e := \varepsilon

else e :=args[2] end if; t := NULL; for n from 0 to m-1 do if

evalb(abs(subs(x=ChiMax, PolMC||n[k])) <= e) then t := t, n; end

if; end do; [t]; end proc :

> seq(test_max(k), k=1..nb);
```

On rencontre donc des problèmes uniquement en bas degré : dès que le degré est assez important, le polynôme approximateur ne s'écarte pas trop des points de contrôle.

Passons maintenant au test de la concavité. On utilise les procédures de Maple sturmseq et sturm qui calculent respectivement V_P et σ_P . On teste ici la stricte négativité de P'' sur $[0;\chi_{max}[$. La procédure test_concave teste la concavité sur l'intervalle [a;b] du polynôme P en l'indéterminée x. La procédure test_PolMC applique ce test aux polynômes approximateurs pour la route k. La variable concave contient les degrés des polynômes effectivement concaves. La variable pb donne les degrés des premiers problèmes de concavité rencontrés.

```
> test_concave := proc(P,x,a,b) local Q, n, t, i; if degree(P,x) <= 1 then RETURN(true); end if; Q := diff(P, x$2); evalb((subs(x=a, Q) < 0) and (sturm(sturmseq(Q, x), x, a, b) = 0)); end proc :

> test_PolMC := proc(k) local t, n, pb; t := NULL; pb := -1; for n from 0 to m do if test_concave(PolMC||n[k], x, 0, ChiMax) then t := t, n else if pb = -1 then pb := n; end if; end if; end do; [t], pb; end proc :

> resultat := seq(test_PolMC(k), k=1..nb) : concave := seq(resultat[2*k-1], k=1..nb); pb := seq(resultat[2*k], k=1..nb); concave := [0, 1, 2, 4], [0, 1, 2, 3, 4] \qquad pb := 3, 5
```

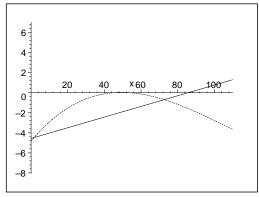
La concavité est proche de celle des données (qui le sont presque!) en bas degré. Plus on est exigeant en degré et moins la concavité est préservée. C'est un phénomène important dans l'approximation polynomiale qui se retrouve par exemple dans le phénomène de Runge.

On stocke maintenant dans P1 et P2 les premiers polynômes approximateurs non concaves (celui de degré 3 pour la route 1 et celui de degré 5 pour la route 2). On les affiche avec une précision de deux chiffres, puis on trace leurs dérivées secondes afin de voir apparaître la non négativité et mesurer l'ampleur du problème.

```
> for k to nb do P||k := PolMC||(pb[k])[k] end do : 

> Digits := 2 : for k to nb do evalf(P||k) end do; Digits := 10 :  11. + 140. \, x - 2.3 \, x^2 + .0089 \, x^3 \\ -4.5 + 78. \, x - 2.4 \, x^2 + .037 \, x^3 - .00024 \, x^4 + .45 \, 10^{-6} \, x^5
```

> plot([seq(diff(P||k, x\$2), k=1..nb)], x=xrange, linestyle=slist, colour=clist);



Le défaut de concavité n'est donc pas très important. On va cependant s'attacher à le résoudre.

8 Approximation polynomiale avec contraintes

On peut traduire les conditions d'annulation aux bornes et de concavité par des conditions polynomiales :

- 1. P est divisible par $X(\chi_{max} X)$,
- 2. P'' est négative sur l'intervalle $[0, \chi_{max}]$.

Commençons par analyser l'impact de la seconde contrainte. Pour cela, introduisons Γ_n la partie de E_n formée des polynômes concaves sur $[0, \chi_{max}]$. C'est une partie convexe de l'espace vectoriel réel E_n , c'est-à-dire que Γ_n contient tout segment dont il contient les extrémités, ou encore Γ_n est stable par prise de barycentre à cofficients positifs. En effet si P et Q sont dans Γ_n et λ un réel de [0;1], on a, pour tout réel α de [0;1] et tous x et y dans $[0;\chi_{max}]$,

$$(\lambda P + (1 - \lambda)Q)(\alpha x + (1 - \alpha)y)$$

$$= \lambda P(\alpha x + (1 - \alpha)y) + (1 - \lambda)Q(\alpha x + (1 - \alpha)y)$$

$$\geq \alpha \lambda P(x) + (1 - \alpha)\lambda P(y) + \alpha(1 - \lambda)Q(x) + (1 - \alpha)(1 - \lambda)Q(y)$$

$$\geq \alpha [\lambda P + (1 - \lambda)Q](x) + (1 - \alpha)[\lambda P + (1 - \lambda)Q](y)$$

et comme $\lambda P + (1 - \lambda)Q$ appartient à E_n , il est donc dans Γ_n . Pour x, y et α fixés comme précédemment, la condition

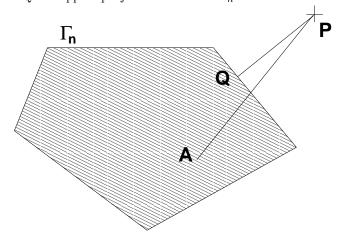
$$P(\alpha x + (1 - \alpha)y) > \alpha P(x) + (1 - \alpha)P(y)$$

définit un fermé de E_n (pour la topologie issue de n'importe quelle norme) et donc Γ_n est un fermé de E_n en tant qu'intersection de fermés. En conclusion Γ_n est une partie convexe fermée de E_n (et même de E_N pour tout entier N supérieur à n).

Soit P un polynôme quelconque de E_n . Si n est inférieur ou égal à m, E_n est muni d'une norme et donc, puisque Γ_n est convexe et fermé, il existe un unique polynôme Q de Γ_n réalisant la distance de P à Γ_n , c'est-à-dire tel que

$$||P - Q|| = \min_{A \in \Gamma_n} ||P - A||.$$

Le polynôme Q est appelé projection de P sur Γ_n .



Rappelons comment on démontre l'existence et l'unicité de Q. Soit A un élément quelconque de Γ_n et B(P,||P-A||) la boule fermée de centre P de rayon ||P-A||. L'ensemble $C=\Gamma_n\cap B(P,||P-A||)$ est compact en tant qu'intersection d'un fermé et d'un compact. De plus il est non vide, puisque A lui appartient. Par conséquent le minimum de la fonction continue sur Γ_n , donnée par la distance à P, est atteint sur C. Autrement dit Q existe. Si maintenant Q_1 et Q_2 réalisent tous deux de minimum, on peut écrire

$$\left| \left| P - \frac{Q_1 + Q_2}{2} \right| \right| = \left| \left| \frac{P - Q_1}{2} + \frac{P - Q_2}{2} \right| \right| \le \frac{1}{2} ||P - Q_1|| + \frac{1}{2} ||P - Q_2||.$$

Comme $(Q_1 + Q_2)/2$ appartient à Γ_n , par convexité, l'inégalité précédente se doit d'être une égalité, par minimalité. Par conséquent les vecteurs $P - Q_1$ et $P - Q_2$ sont colinéaires et de même sens. Comme ils sont également de même norme, ils sont égaux, i.e. $Q_1 = Q_2$, ce qui prouve l'unicité de Q.

Toujours si n est inférieur ou égal à m, notons Q_n la projection de P_n sur Γ_n . D'après le théorème de Pythagore, Q_n réalise le minimum, sur Γ_n de la quantité $R_n(P; \varphi, \chi)$. On a également

$$R_n(Q_n; \varphi, \chi) = R_n(P_n; \varphi, \chi) + ||P_n - Q_n||^2.$$

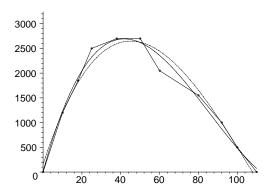
Si n est strictement supérieur à m, la situation se complique. Il faut alors introduire

$$\Gamma_n^{(m)} = \{ P \in E_m \mid (\exists Q \in E_{n-m}) \mid P + (X - \chi_0) \cdots (X - \chi_m) Q \in \Gamma_n \} .$$

On montre que $\Gamma_n^{(m)}$ est une partie convexe fermée de E_m et on peut donc noter $Q_n^{(m)}$ la projection de P_m sur $\Gamma_n^{(m)}$. Par définition de $\Gamma_n^{(m)}$ il existe un polynôme Q_n dans Γ_n (qui n'a aucune raison d'être unique) prenant les mêmes valeurs que $Q_n^{(m)}$ en χ_0,\ldots,χ_m . Ce polynôme minimise $R(P;\varphi,\chi)$ sur Γ_n .

Dans l'exemple précédent, on obtient le polynôme de degré 3

$$Q_3(X) = 156.7 + 120.9X - 1.685X^2 + 0.05106X^3$$
.



Enfin, si on veut rajouter la condition d'annulation aux bornes, on introduit E_n^0 l'ensemble des polynômes de E_n s'annulant en 0 et χ_{max} . On reprend alors l'étude précédente en remplaçant Γ_n et $\Gamma_n^{(m)}$ par

$$\Gamma_n^0 = \Gamma_n \cap E_n^0 \qquad \text{et} \qquad \Gamma_n^{(m,0)} = \Gamma_n^{(m)} \cap E_m^0 \ .$$

Il vient alors

$$Q_3^0(X) = 60.86X - 0.005030X^4 .$$

9 Orthogonalisation de Gram-Schmidt

Afin de mieux comprendre la projection sur Γ_n (ou Γ_n^0 , $\Gamma_n^{(m,0)}$ etc.), il convient de décrire la condition de concavité dans une base orthonormée pour la norme choisie. Pour cela on utilise le procédé d'orthonormalisation de Gram-Schmidt.

Soit G_0 le polynôme constant, égal à $1/\sqrt{m+1}$. C'est un polynôme de norme 1, proportionnel et de même sens que 1. Supposons maintenant, pour n strictement inférieur à m, construits des polynômes (G_0, \ldots, G_n) de degrés respectifs $(0, \ldots, n)$. Comme ces polynômes sont échelonnés en degré, ils forment un système libre dans E_m et donc, par cardinalité, une base de E_n . En particulier on peut exprimer la projection orthogonale de X^{n+1} sur E_n comme combinaison linéaire de (G_0, \ldots, G_n) , de sorte qu'il existe un polynôme Q de la forme

$$X^{n+1} - (a_0G_0 + a_1G_1 + \ldots + a_nG_n)$$

et orthogonal à E_n (et non nul). De plus, si on pose $G_{n+1}=Q/||Q||$, on a construit un polynôme de degré n+1 et donc continuer le procédé.

De la sorte on a obtenu une famille de polynômes de E_m ayant les propriétés caractéristiques suivantes, pour tout entier n compris entre 0 et m:

- 1. G_n est de degré n et de norme 1.
- 2. L'espace vectoriel engendré par $(1, X, ..., X^n)$ est aussi celui engendré par $(G_0, G_1, ..., G_n)$.
- 3. (G_0, G_1, \ldots, G_n) est une base orthonormale de E_n .
- 4. Le produit scalaire entre G_n et X_n est strictement positif.

L'avantage de cette base est qu'on peut la calculer récursivement et que la norme y prend la forme de la norme euclidienne usuelle. Autrement dit, si P et Q sont deux polynômes de E_m , écrits sous la forme $P = \sum_{k=0}^m a_k G_k$ et $Q = \sum_{k=0}^m b_k G_k$, on a

$$||P - Q||^2 = \left\| \sum_{k=0}^m (a_k - b_k) G_k \right\|^2 = \sum_{k=0}^m (a_k - b_k)^2.$$

Montrons l'intérêt de cette reformulation sur un exemple. On prend m=2, avec $(\chi_0,\chi_1,\chi_2)=(0,1,2)$. Il vient $G_0=1/\sqrt{3},\ G_1=(X-1)/\sqrt{2}$ et $G_2=(3X^2-6X+1)/\sqrt{6}$ et on a

$$||a_0 + a_1X + a_2X^2||^2 = 3a_0^2 + 6a_0a_1 + 5a_1^2 + 10a_0a_2 + 9a_1a_2 + 17a_2^2$$

 et

$$||b_0G_0 + b_1G_1 + b_2G_2||^2 = b_0^2 + b_1^2 + b_2^2$$
.

La condition de concavité est ici la négativité de a_2 (ou de b_2 , car c'est équivalent). Si P est un polynôme de degré 2 à coefficient dominant positif, sa projection sur Γ_2 est donc le polynôme $P - \sqrt{6}a_2G_2/3$. Il aurait été bien compliqué de le calculer en essayant directement de minimiser $||P - Q||^2$ avec Q de coefficient dominant négatif.

On pourra s'en convaincre en prenant l'exemple de X^2 dont la projection est 2X - 1/3: en écrivant $||X^2 - Q||^2$, on doit trouver le minimum suivant

$$\min_{(a_0,a_1)\in\mathbf{R}^2,a_2\leq 0} 3a_0^2 + 6a_0a_1 + 5a_1^2 + 10a_0(a_2-1) + 9a_1(a_2-1) + 17(a_2-1)^2.$$

Supposons maintenant connus G_0, \ldots, G_m . On peut donc écrire

$$P_m = \alpha_0 G_0 + \alpha_1 G_1 + \dots + \alpha_m G_m .$$

On a alors, pour n inférieur ou égal à m,

$$P_n = \alpha_0 G_0 + \alpha_1 G_1 + \dots + \alpha_n G_n$$

puisque (G_0, G_1, \dots, G_m) est une base orthonormée de E_m pour la norme $||\cdot||$. Calculons maintenant Q_n sur des exemples en petit degré. Commençons par écrire

$$G_2 = g_{0,2} + g_{1,2}X + g_{2,2}X^2$$
 et $G_3 = g_{0,3} + g_{1,3}X + g_{2,3}X^2 + g_{3,3}X^3$.

Par construction, la matrice de passage de $(1, X, \dots, X^n)$ à (G_0, G_1, \dots, G_n) est triangulaire supérieure à coefficients strictement positifs sur la diagonale. Il en est donc de même pour son inverse. Ainsi $g_{2,2}$ et $g_{3,3}$ sont strictement positifs.

La concavité étant donnée par la négativité de la dérivée seconde, Γ_2 est tout simplement l'ensemble des polynômes $a_0G_0+a_1G_1+a_2G_2$ vérifiant $a_2\leq 0$. Aussi

$$Q_2 = \alpha_0 G_0 + \alpha_1 G_1 + \min(\alpha_2, 0) G_2.$$

La description de Γ_3 est à peine plus complexe. La dérivée seconde du polynôme $a_0G_0+a_1G_1+a_2G_2+a_3G_3$ est un polynôme du premier degré, croissant si a_3 est positif, décroissant sinon. Cette dérivée seconde est donc négative sur $[0;\chi_{max}]$ si et seulement si $a_2g_{2,2}+a_3g_{2,3}\leq 0$ dans le cas où a_3 est négatif et $a_2g_{2,2}+a_3g_{2,3}\leq -3a_3g_{3,3}\chi_{max}$ dans le cas contraire. Autrement dit Γ_3 est décrit par

$$a_2g_{2,2} + a_3g_{2,3} + 3\max(a_3,0)g_{3,3}\chi_{max} \le 0$$
.

Illustrons cette étude avec $g_{2,3}$ négatif :



La partie hachurée (zone 0) correspond à Γ_3 . On repère quatre zones. Le projeté Q_3 s'écrit $\alpha_0 G_0 + \alpha_1 G_1 + \beta_2 G_2 + \beta_3 G_3$ où (β_2, β_3) s'obtient ainsi : si (α_2, α_3) est dans la zone 0, alors $(\beta_2, \beta_3) = (\alpha_2, \alpha_3)$; si (α_2, α_3) est dans la zone 1, (β_2, β_3) est son projeté sur la droite d'équation $a_2 g_{2,2} + a_3 g_{2,3} = 0$; si (α_2, α_3) est dans la zone 2, (β_2, β_3) est son projeté sur la droite d'équation $a_2 g_{2,2} + a_3 (g_{2,3} + 3g_{3,3} \chi_{max}) = 0$; enfin si (α_2, α_3) est dans la zone 3, $(\beta_2, \beta_3) = (0, 0)$.

Si maintenant on veut rajouter la condition de divisibilité, pour calculer Q_2^0 , on obtient les trois conditions :

$$\begin{cases} a_0 g_{0,0} + a_1 g_{0,1} + a_2 g_{0,2} = 0 \\ a_1 g_{1,1} + a_2 (g_{1,2} + g_{2,2} \chi_{max}) = 0 \\ a_2 \le 0 \end{cases}$$

Et donc Γ_2^0 est une demi-droite.

10 Calcul des polynômes orthogonaux

On introduit le produit scalaire et la norme sur E_m dont on se sert pour l'orthonormalisation de Gram-Schmidt. La procédure prod_scal calcule le produit scalaire des deux polynômes P et \mathbb{Q} en l'indéterminée x. La procédure norme calcule la norme du polynôme P, toujours en l'indéterminée x.

```
>prod_scal := proc(P, Q, x) global \chi; local i; sum(subs(x=\chi[i], P*Q), i=1..m) end proc :
```

> norme := proc(P, x) prod_scal(P, P, x)(1/2) end proc :

On peut ainsi évaluer les résidus des approximations au sens des moindres carrés, i.e. $R(P_n; \varphi, \chi)$. On donne la liste de ces résidus avec deux chiffres significatifs.

```
> Digits := 2 : seq( [seq( evalf( norme(PolMC||n[k]-PolMC||(m)[k], x)), n=0..m-1)], k=1..n b); Digits := 10 : [3000., 3000., 1000., 420., 370., 330., 290., 240., 230., 230., 0.]
```

La procédure **normé** renvoie le polynôme P divisé par sa norme. La procédure **base** renvoie l'orthonormalisée de Gram-Schmidt de la base canonique de E_n . Si on rajoute un argument (comme "f" pour "flottant"), la procédure renvoie un polynôme à coefficients flottants. Pour finir on choisit n égal à 5, on stocke dans GS la base obtenue et on affiche le graphe de ces polynômes.

[1400., 1300., 420., 420., 170., 170., 160., 130., 8.9, 6.5, 0.]

```
> normé :=proc(P,x) P/norme(P,x) end proc : 

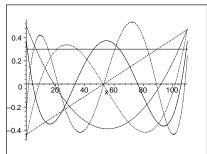
> base := proc(x,n) local schmidt, i, j, P, ps; for i from 0 to n do P := xî; if nargs = 3 then P := evalf(P) end if; if i > 0 then for j from 0 to i-1 do ps := prod_scal(P, schmidt||j, x); P := P - ps*schmidt||j end do; end if; schmidt||i := simplify(normé(P, x)); end do; seq(schmidt||i, i=0..n) end proc : 

> base(x,1); \frac{1}{11}\sqrt{11}, \frac{1}{14658}(x-53)\sqrt{14658}
```

 $\frac{11}{11}\sqrt{11}, \frac{1}{14658}(x-53)\sqrt{14658}$ > base(x,2,"f");

.3015113446, .008259668953 x - .4377624546 $.0002901955036 x^2 + .5037442855 - .03218117274 x$

>GS := [base(x, 5)] : plot(GS, x=xrange, color=clist, linestyle=slist);



On constate qu'ils oscillent beaucoup. En fait chacun d'entre eux a toutes ses racines dans l'intervalle $[0; \chi_{max}]$. Mieux, les racines du polynôme de degré k sont situées entre celles du polynôme de degré k+1.

Si on souhaite faire la même chose pour les polynômes de E_n s'annulant en 0 et χ_{max} , on est confronté à plusieurs possibilités. La première est de travailler uniquement sur la base précédente et d'exprimer les conditions d'annulation aux bornes dans cette base. C'est l'optique qui est celle proposée dans le texte.

Néanmoins, vu qu'on vient de créer une procédure d'orthonormalisation, on peut la rentabiliser. Remarquons tout d'abord que l'ensemble $E_{n,lim}$ des polynômes de E_n s'annulant en 0 et χ_{max} est en fait un espace vectoriel. Ce sont les polynômes de E_n divisibles par $(\chi_{max} - X)X$ et on peut, par exemple, prendre comme base de $E_{n,lim}$ l'ensemble des $(\chi_{max} - X)X^{i+1}$, pour i entre 0 et n-2. Une fois qu'on a une base, il ne reste plus qu'à l'orthonormaliser par la méthode de Gram-Schmidt. C'est ce calcul que fait la procédure base_lim.

Si on travaille de la sorte, on est donc directement dans un espace de dimension n-1, ce qui rend les choses plus faciles (en tout cas pour le visualiser en petit degré). Par contre il faut alors calculer le projeté $P_{m,lim}$ de P_m dans $E_{m,lim}$ et l'exprimer dans la base précédente. Dès lors, la projection $P_{n,lim}$ de P_m dans $E_{n,lim}$ est obtenue par troncature de $P_{m,lim}$ tout comme P_n l'est à partir de P_m .

On choisit encore n égal à 5 (et donc n-2=3), on stocke dans GS_{lim} la base obtenue par orthonormalisation et on affiche le graphe de ces polynômes.

```
> base_lim := proc(x, n) local schmidt, i, j, P, ps; for i from 0
  to n do P := (ChiMax-x)*x(i+1); if nargs = 3 then P := evalf(P)
  end if; if i > 0 then for j from 0 to i-1 do ps := prod_scal(P,
  schmidt||j, x); P := P-ps*schmidt||j end do; end if; schmidt||i :=
  simplify(normé(P, x)); end do; seq(schmidt||i, i=0..n) end proc :
  > base_lim(x,0);
```

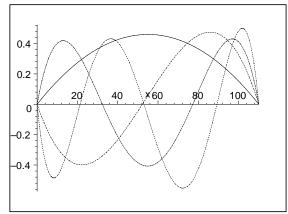
$$-\frac{1}{43245993} \left(-110+x\right) x \sqrt{43245993}$$

> base_lim(x,1,"f");

$$-.0001520642286 (-110. + x) x,$$

 $.001106310225 x^{2} - .6818357786 10^{-5} x^{3} - .03919199559 x$

>GS_lim := [base_lim(x, 3)] : plot(GS_lim, x=xrange, color=clist, linestyle=slist);



On observe le même phénomène que précédemment quant à la localisation des racines des polynômes de cette base.

11 Calculs de projection

Quand les calculs deviennent complexes, il est utile de développer une algorithmique permettant le traitement par un logiciel de calcul formel.

Montrons comment calculer Q_2^0 à partir de la description précédente de Γ_2^0 . On se donne une famille libre (e_1, e_2, e_3) de \mathbf{R}^3 muni de la norme euclidienne orientée habituelle. On veut décrire la projection sur la demi-droite vectorielle d définie par les équations et inéquation suivantes

$$x.e_1 = 0$$
, $x.e_2 = 0$ et $x.e_3 \le 0$.

Les deux premières équations définissent une droite D de vecteur directeur $u = e_1 \wedge e_2$. On a $u.e_3 = \det(e_1, e_2, e_3)$ et donc u est un vecteur directeur de d si et seulement si (e_1, e_2, e_3) est indirecte.

Soit maintenant x un vecteur quelconque et y sa projection sur la droite D. Si y appartient à d, alors y est la projection de x sur d. Sinon cette projection est 0. Par ailleurs on a $y.u = x.u = \det(e_1, e_2, x)$. Par conséquent y appartient à d si et seulement si

$$\frac{\det(e_1, e_2, x)}{\det(e_1, e_2, e_3)} \le 0.$$

Dans ce cas, la projection de x sur d est y, i.e. $(x.u)u/||u||^2$ ou encore

$$\frac{\det(e_1, e_2, x)}{\|e_1 \wedge e_2\|^2} e_1 \wedge e_2 .$$

Dans le cas contraire la projection de x sur d est donc 0.

Dans le cas du calcul de Q_2^0 , on a $e_1=(g_{0,0},g_{0,1},g_{0,2}),\ e_2=(0,g_{1,1},g_{1,2}+g_{2,2}\chi_{max})$ et $e_3=(0,0,1).$ Introduisons

$$e_1 \wedge e_2 = \left(\begin{array}{c} A \\ B \\ C \end{array} \right) = \left(\begin{array}{c} g_{0,1}(g_{1,2} + g_{2,2}\chi_{max}) - g_{0,2}g_{1,1} \\ -g_{0,0}(g_{1,2} + g_{2,2}\chi_{max}) \\ g_{0,0}g_{1,1} \end{array} \right)$$

et

$$\alpha = \det(e_1, e_2, x) = \alpha_0 A + \alpha_1 B + \alpha_2 C$$
 et $N^2 = ||e_1 \wedge e_2||^2 = A^2 + B^2 + C^2$.

Avec ces notations, on obtient

$$Q_2^0 = \frac{\min(\alpha, 0)}{N^2} \left(AG_0 + BG_1 + CG_2 \right) .$$

La situation est donc plus «complète» que pour le calcul de Q_2 : tous les coefficients de P_2 interviennent dans le calcul. En fait la condition sur P'' ne fait intervenir que n-1 coefficients, à savoir α_2,\ldots,α_n . La condition d'annulation en 0 et χ_{max} donne les deux conditions supplémentaires qui font intervenir α_0 et α_1 .

En degré 3, la situation est encore descriptible en termes simples, même si on se trouve déjà dans l'espace de dimension 4. En effet la condition d'annulation s'écrit $(x.e_1=0$ et $x.e_2=0)$ tandis que la condition de concavité s'écrit $(x.e_3\leq 0$ et $x.e_4\leq 0)$ où (e_1,e_2,e_3,e_4) est un système libre. Les deux premières équations décrivent un plan tandis que les deux dernières sont celles déjà étudiées. Au final on obtient un cône convexe comme celui dessiné dans la section précédente, mais au lieu d'être dans le plan (α_2,α_3) , il se trouve dans le plan d'équation $x.e_1=x.e_2=0$.

12 Suites de Sturm

La concavité s'exprime comme la négativité d'un polynôme (le polynôme dérivée seconde) sur un intervalle. On s'intéresse maintenant à la traduction algébrique de cette condition. En degré 2, il s'agit d'un demi-espace ($\alpha_2 \leq 0$) et en degré 3 c'est un cône convexe, intersection de deux demi-espaces. Comme on va le voir, à partir du degré 4 la description de Γ_n met en jeu des objets non-linéaires : les (in)équations algébriques qui interviennent sont de degré au moins 2.

Soit Q un polynôme à coefficients réels. La condition Q négatif sur $[0, \chi_{max}]$ peut s'écrire avec un nombre fini de conditions. En effet cette condition est équivalente au fait que Q est négatif aux bornes 0 et χ_{max} de l'intervalle ainsi qu'en tous ses extrema intérieurs. Autrement dit

$$\forall x \in [0, \chi_{max}] \ Q(x) \le 0 \Leftrightarrow \begin{cases} Q(0) \le 0 \\ Q(\chi_{max}) \le 0 \\ \forall x \in [0, \chi_{max}] \ Q'(x) = 0 \Rightarrow Q(x) \le 0 \end{cases}$$

Traitons un exemple : soit $Q(X) = aX^2 + bX + c$ sur [0,1]. On a Q(0) = c, Q(1) = a + b + c et Q' s'annule en -b/2a, de sorte que Q est négatif sur [0,1] si et seulement si

$$c \le 0$$
, $a+b+c \le 0$ et $0 < -\frac{b}{2a} < 1 \Rightarrow c - \frac{b^2}{4a} \le 0$;

On peut également formuler le problème de façon légèrement différente, en utlisant les suites de Sturm, bien adaptées au calcul formel. En effet un polynôme est strictement négatif sur un intervalle si et seulement s'il est strictement négatif en un point et n'admet aucune racine sur l'intervalle. Cette dernière condition se teste grâce au théorème de Sturm, que l'on va maintenant décrire.

À partir d'un polynôme P, on construit une suite $(P_k)_{0 \le k \le n}$ de la façon suivante : $P_0 = P$, $P_1 = -P'$ et pour k entre 1 et n-1, P_{k+1} est l'opposé du reste de la division euclidienne de P_{k-1} par P_k . On s'arrête à n tel que P_{n+1} est nul. En particulier P_n est un pgcd de P et P'; P_n est donc constant si et seulement si P est à racines simples. Ainsi avec le polynôme Q précédent (supposé à racines distinctes), on obtient la suite

$$\left(aX^{2} + bX + c, -2aX - b, \frac{b^{2}}{4a} - c\right)$$
.

On suppose que P n'est pas nul et n'a que des zéros simples. Pour x réel, on note $\sigma_P(x)$ le nombre de changements de signes dans la suite $V_P(x) = (P_k(x))_{0 \le k \le n}$, en ignorant les zéros (avec l'hypothèse faite, il y a au moins un terme non nul dans cette suite : $P_n(x)$). En particulier, avec une extension de la définition de V_P , $\sigma_P(-\infty) = 0$ et donc $\sigma_P(x)$ est nul pour x assez petit, par continuité des polynômes intervenant dans la suite $V_P(x)$.

Par définition de la division euclidienne, on peut écrire, pour tout entier k entre 1 et n-1,

$$P_{k-1}(X) = Q_k(X)P_k(X) - P_{k-1}(X)$$

pour un certain polynôme Q_k . En particulier, si λ est une racine de P_k , alors $P_{k-1}(\lambda)P_{k+1}(\lambda)=-P_{k+1}(\lambda)^2$. Par ailleurs, la nullité de deux termes consécutifs

dans la suite $V_P(x)$ entraîne la nullité de la suite $V_P(x)$, ce qui est contraire au fait que P et P' n'ont pas de racine commune (les zéros de P sont simples). Il en résulte que, si λ est une racine de P_k , alors alors $P_{k-1}(\lambda)$ et $P_{k+1}(\lambda)$ sont de signes contraires. En particulier le nombre de changements de signes dans la suite $(P_{k-1}(x), P_k(x), P_{k+1}(x))$ est 1 pour x proche de λ , indépendamment du fait que x soit inférieur ou supérieur à λ . Autrement dit $\sigma_P(x)$ est constant lorsque x «traverse» une racine d'un polynôme P_k pour k non nul.

Enfin, puisque les zéros de P sont simples, au voisinage d'une racine λ de P, on a

$$P(x) \simeq (x - \lambda)P'(\lambda)$$

de sorte que $\sigma_P(x)$ augmente de 1 à partir de λ (non inclus). Ainsi $\sigma_P(x)$ est égal au nombre de racines réelles de P strictement inférieures à x et, pour x < y, $\sigma_P(y) - \sigma_P(x)$ est égal au nombre de racines de P sur [x, y].

Avec l'exemple du polynôme Q du second degré (et en supposant qu'il est à racines simples), Q est négatif sur [0;1] si et seulement si Q est négatif au voisinage de 0 à droite et n'a pas de racine sur]0;1[. Pour pouvoir utiliser les suites de Sturm, on récrit cette condition sous la forme :

- 1. Soit Q(0) < 0 et Q n'a pas de racine sur [0; 1].
- 2. Soit Q(0) = 0, Q'(0) < 0 et Q(X)/X n'a pas de racine sur [0; 1].

Ce qui donne, en utilisant les suites $V_P(0)$ et $V_P(1)$:

$$c < 0$$
 et $\sigma\left(c, -b, \frac{b^2}{4a} - c\right) = \sigma\left(a + b + c, -2a - b, \frac{b^2}{4a} - c\right)$

ou

$$c = 0$$
, $b < 0$ et $\sigma(b, -a) = \sigma(a + b, -a)$.

Le second cas s'écrit simplement $c=0,\ b<0$ et $a+b\leq 0$. Étudions maintenant le premier cas. Par parité du nombre de changements de signe, la seconde condition impose a+b+c négatif et il n'y a pas d'autre condition si $b^2/4a-c>0$. Si au contraire $b^2/4a-c<0$, la seconde condition est équivalente à ce que b et b+2a soient de même signe. Si c<0 et $b^2/4a-c<0$, alors a est négatif, et donc b et b+2a sont de même signe si et seulement si b est négatif ou supérieur à -2a. Cette deuxième étude englobe la première si on autorise la nullité de c.

On trouve donc la contraposée de l'implication donnée par le premier point de vue : les suites de Sturm montrent que Q est négatif sur [0,1] si et seulement si

$$c \leq 0 \;, \qquad a+b+c \leq 0 \quad \text{et} \quad \frac{b^2}{4a} - c < 0 \Rightarrow (b \leq 0 \; \text{ou} \; b \geq -2a) \;.$$

Pour le cas général du degré quelconque, on écrit que l'ensemble des polynômes concaves sur $[0;\chi_{max}]$ est l'adhérence (dans E_n , i.e. au sens des coefficients par rapport à une base) de l'ensemble des polynômes strictement concaves sur $[0;\chi_{max}]$ et même mieux, de ceux dont la dérivée seconde est strictement négative sur $[0;\chi_{max}[$. En effet qu'une limite de tels polynômes soit concave provient simplement du fait que Γ_n est fermé. Réciproquement si P est dans Γ_n , alors $P-\varepsilon X^2$ a une dérivée seconde strictement négative sur $[0;\chi_{max}[$ pour tout ε strictement positif, et l'inclusion réciproque en résulte.

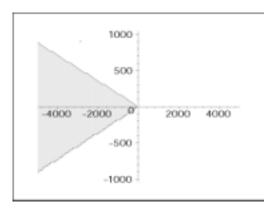
Maintenant, écrire la stricte négativité de P'' est très simple avec les suites de Sturm : on demande P''(0) < 0 et $\sigma_{P''}(1) = \sigma_{P''}(0)$.

13 Meilleure approximation concave dans le cas de la route 1, en degré 3.

On applique la stratégie déjà décrite. On commence par calculer les coefficients (c) de P1 dans la base GS, puis les coefficients (c_lim) de sa projections sur $E_{3,lim}$ dans la base GS_lim.

On prend ensuite un polynôme générique Q3 dans E_3 et un autre Q3_lim dans $E_{3,lim}$. On calcule leurs dérivées secondes R3 et R3_lim et on décrit la négativité de celles-ci en 0 et χ_{max} . On obtient respectivement les conditions (d1<0 et d2<0) et (d1_lim<0 et d2_lim<0).

```
> c := seq(prod_scal(P1, GS[j], x), j=1..nops(GS)):
> c_lim := seq(prod_scal(P1, GS_lim[j], x), j=1..nops(GS_lim)):
>Q3 := sum(a[i]*GS[i], i=1..4) : Q3_lim := sum(b[i]*GS_lim[i],
 i=1...2) :
> R3 := diff(Q3, x$2) : R3_lim := diff(Q3_lim, x$2) :
> d1 := subs(x=0, R3) : d2 := subs(x=ChiMax, R3) : evalf(d1);
 evalf(d2);
                     .0005803910069 \ a_3 - .003210991445 \ a_4
                     .0005803910069 \ a_3 + .003285173652 \ a_4
> d1_lim := subs(x=0, R3_lim) : d2_lim := subs(x=ChiMax, R3_lim) :
 evalf(d1_lim); evalf(d2_lim);
                    -.0003041284572 \ b_1 + .002212620451 \ b_2
                    -.0003041284572 \ b_1 -.002287495689 \ b_2
   On trace le domaine (d1 \le 0 \text{ et } d2 \le 0).
>test_ccv := proc(x, y) local u, v; u := evalf(subs({a[3]=x, a[4]=y},
 d1)); v := evalf(subs({a[3]=x, a[4]=y}, d2)); if sign(u) <= 0 and
 sign(v) \le 0 then 1 else -1 end if; end proc :
> ccv := implicitplot(test_ccv, -5000..5000, -1000..1000,
 contours=[0], filled=true, colouring=[white, gray], grid=[100,
 100]) :
```



Il en résulte que le projeté de P1 sur le domaine de concavité, i.e. la meilleure approximation concave des données de la route 1 en degré 3, est obtenue grâce à la projection sur d2, de sorte que le projeté cherché est c[1].G1 + c[2].G2 + u.G3 + v.G4 où (u,v) est le projeté de (c[3],c[4]) sur d2.

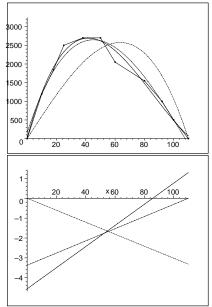
```
>proj := proc(d, a, b, u, v) local A, B; A := subs({a=1,b=0}, d); B := subs({a=0,b=1}, d); u-A*(A*u+B*v)/(A2+B2), v-B*(A*u+B*v)/(A2+B2); end proc :
>C := [c[1], c[2], proj(d2, a[3], a[4], c[3], c[4])] :
>Proj := sum(C[i]*GS[i], i=1..4);
Proj := \frac{638215794589780}{4073153358839} + \frac{1476796145449537}{12219460076517}x
-\frac{6862981991470}{4073153358839}x^2 + \frac{62390745377}{12219460076517}x^3
```

On effectue les mêmes calculs pour la projection sur $E_{3,lim}$. On affiche le résultat de ces calculs : tout d'abord les approximations (avec les notations du texte, ce sont P_3 , Q_3 et Q_3^0), puis leurs dérivées secondes.

```
>proj_lim := proc(u, v) local U, V; U, V := proj(d1_lim, b[1], b[2],
u, v); if sign(evalf(subs({b[1]=U, b[2]=V}, d2_lim))) > 0 then U,
V := proj(d2_lim, b[1], b[2], u, v); if sign(evalf(subs({b[1]=U2,
b[2]=V2}, d1_lim))) > 0 then U, V :=0, 0 end if; end if; U, V; end
proc :
>C_lim := [proj_lim(c_lim[1], c_lim[2])] :
>Proj_lim := expand(sum(C_lim[i]*GS_lim[i], i=1..2));
```

$$Proj_lim := \frac{23532265130000}{386676220659} x - \frac{1944815300}{386676220659} x^3$$

```
> display({MCplot3[1], plot(Proj_lim, x=xrange, linestyle=2,
   colour=black), plot(Proj, x=xrange, linestyle=3, colour=black)});
> plot([diff(P1, x$2), diff(Proj_lim, x$2), diff(Proj, x$2)],
   x=xrange, colour=clist, linestyle=[1,2,3]);
```



On constate donc que la projection Q_3^0 , à savoir celle qui a vraiment les propriétés souhaitées d'annulation aux bornes et de concavité, diffère assez notablement des données de départ.

14 Obtention d'un schéma numérique

Pour obtenir une équation vérifiée par χ , on écrit la conservation du nombre de véhicules. Celle-ci s'écrit, en considérant le tronçon de route [x,x+dx] pendant l'intervalle de temps [t,t+dt]: le nombre de véhicules sur le tronçon est $\chi.dx$ et sa variation pendant l'intervalle de temps est donc $\partial\chi/\partial t.dx.dt$. Cet accroissement est la différence entre le nombre de véhicules entrant et sortant. Le nombre de véhicules passant en un point pendant l'intervalle de temps est $\chi.dt$ et donc la différence entre le nombre de véhicules entrant (en x) et sortant (en x+dx) est $-\partial\chi/\partial x.dt.dx$. Il vient donc

$$\frac{\partial \chi}{\partial t} + \frac{\partial \varphi}{\partial x} = 0$$

ou encore, en écrivant $\varphi = f(\chi)$

$$\frac{\partial \chi}{\partial t} + \frac{\partial f(\chi)}{\partial x} = 0.$$

Pour implémenter un schéma numérique, on fait un maillage de pas Δx (diviseur entier de L) en espace et de pas Δt en temps. On impose la densité initiale pour x=0 et la densité limite pour t=0. On note, pour j entier entre 0 et $j_{max}=L/\Delta x$ et pour n entier positif, $\chi(n\Delta t,j\Delta x)=\chi_j^n$. D'après la formule de Taylor, si g est une fonction dérivable en un point a, on a $g(a+\Delta a)-g(a-\Delta a)\sim 2\Delta a.g'(a)$. Par conséquent

$$\frac{\chi_j^{n+1} - \chi_j^{n-1}}{2\Delta t} \simeq \frac{\partial \chi}{\partial t} (n\Delta t, j\Delta x)$$

et

$$\frac{f(\chi_{j+1}^n) - f(\chi_{j-1}^n)}{2\Delta x} \simeq \frac{\partial f(\chi)}{\partial x} (n\Delta t, j\Delta x) \ .$$

On est donc conduit à adopter le schéma numérique suivant :

$$\Delta x \left(\chi_j^{n+1} - \chi_j^{n-1}\right) + \Delta t \left(f(\chi_{j+1}^n) - f(\chi_{j-1}^n)\right) = 0$$

On se donne χ_0^n la densité entrante et χ_j^0 la densité initiale. Numériquement, on s'intéresse à l'évolution en temps, pas par pas, et ce en calculant la densité à chaque point du maillage, en partant de l'entrée, pas par pas.

Pour résoudre les problèmes limites, on amende le schéma numérique de la façon suivante (justifiée également par la formule de Taylor). Tout d'abord pour calculer χ^1 , on ne dispose que de χ^0 , d'où l'écriture

$$\chi_j^1 = \chi_j^0 - \frac{\Delta t}{2\Delta x} \left(f(\chi_{j+1}^0) - f(\chi_{j-1}^0) \right) .$$

De même pour $\chi_{j_{max}}$, on ne dispose que de $\chi_{j_{max}-1}$:

$$\chi_{j_{max}}^{n+1} = \chi_{j_{max}}^{n-1} - \frac{2\Delta t}{\Delta x} \left(f(\chi_{j_{max}}^n) - f(\chi_{j_{max}-1}^n) \right)$$

Pour le traitement numérique, on a choisi $L=T=1, \Delta x=\Delta t=10^{-2},$

$$\chi_{max} = 110$$
, $\chi^0(x) = 70e^{x-L}$ et $\chi_0(t) = 50 (1 + \sin(2\pi t))$.

François Sauvageot

Modélisation du trafic routier

15 Résolution numérique

La procédure trafic calcule les valeurs χ_j^n selon le principe précédent. La procédure interpol construit une fonction en escalier à partir de valeurs discrètes. Enfin la procédure tracé trace la solution numérique de l'équation (E) en fonction des données, notamment en fonction de l'approximation f de la relation fondamentale entre χ et φ .

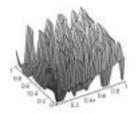
```
> trafic := proc(f,\chi_i, \chi_e, dx, dt, L, T) global ChiMax; local j, n, jmax, d, c_x, c_t, e; jmax := floor(L/dx); n := 0; for j from 0 to jmax do d[0][j] := evalf(\chi_i(j*dx)); end do; while n*dt < T do d[n+1][0] := evalf(\chi_e(n*dt)); for j to jmax do if n = 0 then c_t := 1 else c_t := 2; end if; if j = jmax then c_x := 1 else c_x := 2; end if; e := d[n+1-c_t][j] - (c_t*dt)/(c_x*dx)*(f(d[n][j-1+c_x]) - f(d[n][j-1])); d[n+1][j] := min(max(0, e), ChiMax); end do; n := n+1; end do; d; end proc :

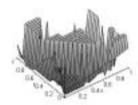
> interpol := proc(d, x, t, dx, dt) local n, j; j := round(x/dx); n := round(t/dt); d[n][j]; end proc :

> tracé := proc(f, \chi_i, \chi_e, dx, dt, L, T) local d, h; d := trafic(f,\chi_i, \chi_e, dx, dt, L, T); h := (x, t) \rightarrow interpol(d, x, t, dx, dt); plot3d(h(x, t), x=0..L, t=0..T, axes=NORMAL); end proc :

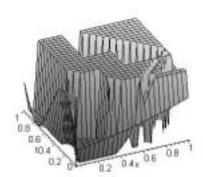
> dx := 10(-2) : dt := 10(-2) : L := 1. : T := 1. : \chi_i := x \rightarrow 70*exp(x-L) : \chi_e := t \rightarrow 50*(1+sin(2*\pi*t)) :
```

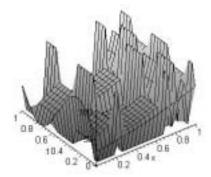
Les cinq figures présentent les diverses simulations, en fonction de f. D'abord avec la précision maximale sur les points de contrôle, puis en degré 2 et enfin en degré 3 (qui n'est pas concave).





On étudie ensuite l'effet d'imposer la concavité, puis la concavité et nullité aux bornes. On constate avec ces exemples que la modélisation n'est pas neutre et qu'il faut donc valider les hypothèses faites avec vigilance.





16 Traitement théorique de l'E.D.P.

L'étude de l'équation aux dérivées partielles

(E)
$$\frac{\partial \chi}{\partial t} + \frac{\partial f(\chi)}{\partial x} = 0$$

peut s'effectuer en cherchant les courbes caractéristiques $t\mapsto (x(t);t)$ le long desquelles χ est constant.

En différentiant $\chi(x(t),t)$ par rapport à t, on obtient

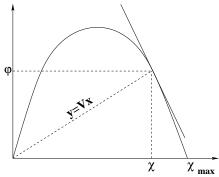
$$0 = \frac{\partial \chi}{\partial t} + x'(t) \frac{\partial \chi}{\partial x} .$$

Par comparaison avec l'équation précédente, il vient

$$x'(t) = f'(\chi)$$

et les courbes caractéristiques sont donc des droites de pente $f'(\chi)$. Autrement dit les «caractéristiques» de densité, débit, vitesse moyenne se propagent à la vitesse $f'(\chi)$, qui est distincte de la vitesse moyenne des véhicules $V = f(\chi)/\chi$.

On peut utiliser le graphe fondamental pour visualiser la différence entre ces deux quantités.



Cette méthode permet de déterminer χ à tout instant, connaissant sa valeur en t=0, du moins dans une première approche. Notons χ_0 la donnée initiale : $\chi(x,0)=\chi_0(x)$ pour x dans [0;L]. On a alors

$$\chi(x + f'(\chi_0(x)) t, t) = \chi_0(x) .$$

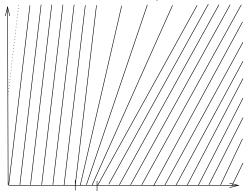
Néanmoins, dans le plan (x,t), ces droites caractéristiques ont peu de chances de recouvrir le carré $[0;L]\times [0,T]$. On peut rencontrer deux difficultés

- 1. Un point (x,t) est atteint pas au moins deux caractéristiques, correspondant donc à des valeurs distinctes χ .
- 2. Un point (x; t) n'est atteint par aucune caractéristique.

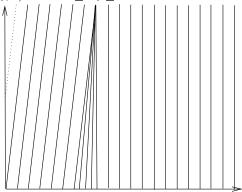
Traitons un exemple. On prend $L=100,\ T=1,\ \chi_{max}=110$ et, pour f, la fonction la plus simple possible, à savoir $f(\chi)=\chi(110-\chi)$. On part d'une situation initiale à deux états : $\chi_0(x)=50$ pour $0\le x\le 30,\ \chi_0(x)=5a$ pour $40\le x\le L$ et χ_0 est affine sur [30; 40]. Ici a est une constante distincte de 10. En fait, on pourrait, en se passant de la condition de continuité pour χ_0 , prendre $\chi_0=5a$ à partir de 30 : le phénomène que nous allons décrire serait le même.

Les caractéristiques sont donc d'équation $x(t) = x_0 + 10t$ pour $0 \le x_0 \le 30$, $x(t) = x_0 + (110 - 10a)t$ pour $40 \le x_0 \le L$ et $x(t) = x_0 + (10 + (10 - a)u)t$ pour $x_0 = 30 + u$ et $0 \le u \le 10$. Prenons t = T, les points (x, T) atteints par une caractéristique du premier type sont ceux pour lesquels $10 \le x \le 40$. Pour le second type, on trouve $150 - 10a \le x \le 210 - 10a$. Enfin pour le troisième type, il vient x = 40 + (11 - a)u et donc x est compris entre 40 et 150 - 10a.

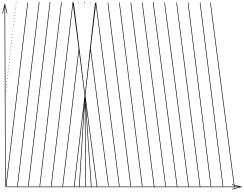
Ainsi, lorsque a < 11, tous les points entre 10 et L sont atteints. Ce qui ce que l'on veut si l'on admet que les points vérifiant $0 \le x < 10$ sont atteints par des caractéristiques issues de x = 0 et t > 0 (le flux rentrant sur la route).



Si maintenant a=11, le point x=40 est atteint par toutes les caractéristiques issues de $(x_0,0)$ avec $30 \le x_0 \le 40$.



Si a>11 les courbes caractéristiques se croisent avant t=T et, de plus, des points entre 210-10a et 100 ne sont atteints par aucune caractéristique.



17 Solutions discontinues.

La conséquence du calcul précédent est qu'il ne peut exister de solutions continues, même avec des conditions intiales continues, que dans un intervalle de temps petit. Afin de comprendre le phénomène, on va partir directement d'une solution discontinue et voir si on peut «contraindre» la discontinuité.

On prend les mêmes hypothèses que pour l'exemple précédent avec la modification suivante : $\chi_0 = 60$ pour $30 < x \le L$. Pour $\chi_0 = 50$, les caractéristiques ont une pente 10, pour $\chi_0 = 70$ la pente est -30. Il s'ensuit que pour toute valeur α comprise entre -30 et 10, la fonction $\chi_{\alpha}(x;t) = 50$ pour $0 \le x < 30 + \alpha t$ et $\chi_{\alpha}(x;t) = 60$ pour $30 + \alpha t < x \le L$ est solution de (E) en dehors de la droite $x = 30 + \alpha t$. Pour juger de la pertinence de cette famille de solutions, nous pouvons essayer de vérifier la conservation des véhicules à l'instant t. Initialement on avait $50 \times 30 + 60 \times 70$ véhicules, tandis qu'à l'instant t il y en a $50 \times (30 + \alpha t) + 60 \times (70 - \alpha t)$. La différence entre l'instant t et l'instant initial est donc de $-10\alpha t$. Parallèlement, comme le flux rentrant est f(50) = 3000 et le flux sortant est f(70) = 2800, il y a donc 200t véhicules en plus sur la route. Pour que les deux quantités calculées soient égales, on doit donc avoir $\alpha = -20$.

On se donne maintenant une «onde de choc», i.e. une courbe paramétrée

$$\Omega = \{ (x_c(t); t) \mid t \in [0; T] \}$$

telle qu'il existe une solution χ de (E) en dehors de Ω . On impose de plus

1. la fonction χ admet des limites à gauche et à droite de Ω :

$$\forall t \in [0; T]$$

$$\lim_{x \to x_c(t)^{\pm}} \chi(x, t) = \chi_{\pm}(t)$$

2. la fonction $t \mapsto x_c(t)$ est de classe C^1 sur [0; T].

Fixons τ et examinons le bilan de conservation (des véhicules) dans l'intervalle $[x_c(\tau - \delta_t); x_c(\tau + \delta_t)]$ entre les instants $\tau - \delta_t$ et $\tau + \delta_t$. On étudie ce bilan lorsque δ_t tend vers 0, avec l'approximation $\delta_x \simeq x_c'(\tau)\delta_t$.

Le flux entrant est $2f(\chi_-)\delta_t$, tandis que le flux sortant est $2f(\chi_+)\delta_t$. Or, à l'instant $\tau - \delta_t$, on comptabilise $\chi_+(x_c(\tau + \delta_t) - x_c(\tau - \delta_t))$ véhicules, soit approximativement $2\chi_+ x_c'(\tau)\delta_t$. De même, à l'instant $\tau + \delta_t$, on comptabilise $2\chi_- x_c'(\tau)\delta_t$ véhicules. On doit donc avoir égalité entre $2(f(\chi_-) - f(\chi_+))\delta_t$ et $2(\chi_- - \chi_+)x_c'(\tau)\delta_t$. Il vient donc

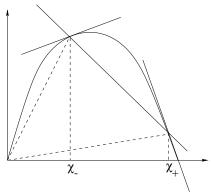
$$\frac{f(\chi_+) - f(\chi_-)}{\chi_+ - \chi_-} = \frac{\delta_x}{\delta_t} = x_c'(\tau) .$$

On comprend ici la dénomination d'«onde de choc» : à sa traversée, les conditions du trafic sont brutalement modifiées. L'onde de choc se propage à la vitesse x'_c , vitesse que l'on vient de relier à la quantification de la discontinuité de χ . On peut interpréter géométriquement la relation précédente : l'onde de choc se propage à une vitesse égale à la pente reliant les points du diagramme fondamental attachés aux valeurs limites à gauche et à droite.

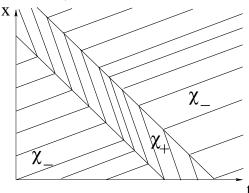
Ainsi le diagramme fondamental permet de comprendre à quel vitesse se «propage» un bouchon : si un trafic fluide (par exemple $\chi=40$), rencontre un bouchon (par exemple $\chi=100$), il y a un phénomène de «recul» du bouchon (concrétisé par le recul de la voiture de sécurité alertant les automobilistes).

Avec l'exemple donné, cette voiture se déplace à la vitesse (f(100) - f(40))/60, i.e. 30 km/h (en marche arrière, bien entendu).

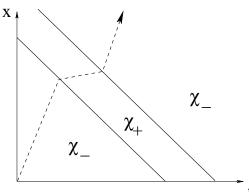
Voici le graphe fondamental. On y lit la vitesse de propagation des courbes caractéristiques : f'(40) et f'(100), ainsi que la vitesse de propagation de l'onde de choc : (f(100) - f(40))/(100 - 40). Enfin on lit la vitesse de déplacement d'un véhicule soumis à une densité de trafic 40 ou 100.



On en déduit les courbes caractéristiques (en supposant que le trafic redevient fluide après le bouchon) :



et donc le déplacement d'un véhicule



et on peut, par exemple, en déduire le temps de parcours.