MPSI 2 Semaine 4

Dans tous les exercices, le plan est muni d'un repère orthonomal direct $(O, \vec{\imath}, \vec{\jmath})$.

Exercice 1

On considère le repère $\mathcal{R}' = (A; \vec{u}, \vec{v})$ obtenu à partir de (O, \vec{i}, \vec{j}) par la rotation d'angle $\frac{\pi}{3}$ et de centre O, suivie de la transation de vecteur $\overrightarrow{w}(3, -2)$.

- 1. Soit le point B de coordonnées (-1,2) dans $(O,\vec{\imath},\vec{\jmath})$. Déterminer ses coordonnées dans \mathcal{R}' .
- **2.** Soit la droite D d'équation : $\sqrt{3}x y = 1$ dans $(O, \vec{\imath}, \vec{\jmath})$. Déterminer une équation de D dans \mathcal{R}' .

Exercice 2

Dans chaque cas, déterminer une équation cartésienne et des équations paramétriques de la droite :

- 1. passant par le point A(-1,2) et dirigée par le vecteur $\vec{u}(5,3)$.
- **2.** passant par les points B(-2,3) et C(0,5).
- **3.** passant par le point D(-1,3) et de vecteur normal $\overrightarrow{n}(-1,2)$.

Exercice 3

Reconnaître les courbes d'équation polaire suivantes : $\rho = 3\cos\theta - 4\sin\theta$, et $\rho = \frac{1}{\cos\theta + 3\sin\theta}$.

Exercice 4

Soient A(1,2), B(2,3), C(3,0). Calculer l'aire du triangle ABC.

Exercice 5

Calculer la distance du point A à la droite D dans les cas suivants :

- 1. A(1,0) et D a pour équation cartésienne 2x 3y = 12.
- **2.** A(-2,3) et D passe par B(-1,2), de vecteur normal $\overrightarrow{n}(2,3)$.
- **3.** A(5,-4) et D passe par C(0,2), de vecteur directeur $\overrightarrow{u}(1,1)$.

Exercice 6

Soient les points A(-1,1), B(3,4) et C(1,0).

- 1. Déterminer la distance de C à la droite (AB).
- 2. Déterminer une équation cartésienne de l'ensemble des points M tels que les distances de M à C et de M à la droite (AB) soient égales.

Exercice 7

Soit a un réel strictement positif. On définit les points A(a,0), B(-a,0) et $C(0,\sqrt{3}a)$.

- 1. Quelle est la nature du triangle ABC?
- 2. Donner un système d'inéquations déterminant les coordonnées des points intérieurs à ce triangle.
- 3. Montrer que la somme des distances d'un point intérieur à ABC aux trois côtés de ce triangle est constante.

Exercice 8 Tangente à un cercle

- **1.** Soit $C: x^2 + y^2 2ax 2by = c$. Soit $M(x_0, y_0)$ un point de C. Montrer que la tangente à C en M a pour équation $xx_0 + yy_0 a(x + x_0) b(y + y_0) = c$.
- 2. Soit \mathcal{C} le cercle de centre $\Omega(0,10)$ et de rayon 10. Soit N(14,15). Former une équation cartésienne de la tangente menée de N à \mathcal{C} et de pente strictement négative.

Feuille d'exercices 5 Page 1/2

MPSI 2 Semaine 4

Exercice 9

Soient \mathcal{C} et \mathcal{C}' deux cercles tangents extérieurement, de rayons respectifs R et R'. Une de leurs tangentes communes D est tangente à \mathcal{C} en A et à \mathcal{C}' en A'. On note d = AA'.

- 1. Montrer que $d^2 = 4RR'$.
- 2. Soit \mathcal{C}'' un troisième cercle, tangent extérieurement à \mathcal{C} et \mathcal{C}' et tangent à D. Montrer que $\frac{1}{\sqrt{R''}} = \frac{1}{\sqrt{R'}} + \frac{1}{\sqrt{R}}.$

Exercice 10

Soit D la droite d'équation x-2y+2=0 dans $(O,\vec{\imath},\vec{\jmath})$. Soient les cercles Γ et Γ' d'équations : $x^2+y^2+4x-2y=4$ et $x^2+y^2+4y=\frac{9}{4}$.

Déterminer le nombre de points d'intersection de D et Γ , de D et Γ' , de Γ et Γ' .

Exercice 11

Soit, pour tout $\lambda \in \mathbb{R}$, la droite D_{λ} d'équation : $(1-\lambda^2)x + 2\lambda y - 4\lambda - 2 = 0$.

- 1. Montrer qu'il existe un cercle Γ tel que pour tout λ , D_{λ} est tangente à Γ .
- **2.** Toute tangente à Γ est-elle une droite de la famille $(D_{\lambda})_{\lambda \in \mathbb{R}}$?

Exercice 12

Soint A, B, C trois points non alignés du plan et M un point de la droite (AB).

La parallèle à (BC) passant par M coupe (CA) en N, la parallèle à (AB) passant par N coupe (BC) en P, La parallèle à (CA) passant par P coupe (AB) en Q.

Montrer que les milieux des segments [MQ] et [AB] sont confondus.

Exercice 13

Soit ABC un triangle non aplati. On note $a=BC,\,b=CA,\,c=AB,\,\widehat{A}$ l'angle non orienté $(\overrightarrow{AB},\overrightarrow{AC}),\,\widehat{B}$ l'angle non orienté $(\overrightarrow{BA},\overrightarrow{BC})$ et \widehat{C} l'angle non orienté $(\overrightarrow{CA},\overrightarrow{CB})$.

On note $p = \frac{1}{2}(a+b+c)$ le demi-périmètre, S l'aire du triangle ABC et R le rayon du cercle circonscrit.

- 1. Montrer que $c^2 = a^2 + b^2 2ab\cos\widehat{C}$.
- **2.** En déduire la formule de Héron : $S = \sqrt{p(p-a)(p-b)(p-c)}$.
- 3. Montrer que $\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2R$.

Exercice 14

Soit A(-2,4) et D et D' deux droites d'équations respectives : x+2y+3=0 et 3x+2y+1=0.

- 1. Déterminer les coordonnées du projeté orthogonal de A sur D.
- 2. Déterminer une équation cartésienne de la droite symétrique de D par rapport à A.
- 3. Déterminer une équation cartésienne de la droite symétrique de D' par rapport à D.

Exercice 15

- 1. Déterminer le centre et le rayon du cercle d'équation cartésienne $x^2 + y^2 + 4x 3y + 6 = 0$.
- 2. Déterminer une équation polaire du cercle d'équation cartésienne : $x^2 + y^2 3x 3y = 0$.
- **3.** Déterminer les coordonnées des points d'intersection du cercle $C: x^2 + y^2 4x + 2y 4 = 0$ et de la droite D: x + 3y 2 = 0.

Feuille d'exercices 5 Page 2/2