CAPES 2002 – Deuxième composition (extrait) **NOTATIONS.**

On note **P** l'ensemble des nombres premiers. Pour tout nombre premier p, on note $\mathbf{Z}_{(p)}$ l'ensemble des **rationnels** dont une représentation irréductible a un dénominateur non divisible par p et v_p la valuation p-adique étendue à \mathbf{Z} : $v_p(0) = +\infty$ et, pour n non nul, $|n| = \prod_{p \in \mathbf{P}} p^{v_p(n)}$. On convient $v_p(n) \leq v_p(0)$, pour tout n dans \mathbf{Z} .

Pour tout réel x, on appelle partie entière de x et on note [x] l'unique entier k vérifiant $k \le x < k+1$. On note :

- $\mathbf{Q}[X]$ l'ensemble des polynômes en l'indéterminée X à coefficients rationnels,
- $\mathbf{R}[X]$ l'ensemble des polynômes en l'indéterminée X à coefficients réels et, pour tout entier naturel n, $\mathbf{R}_n[X]$ le sous-ensemble de $\mathbf{R}[X]$ formé des polynômes de degré inférieur ou égal à n.

Pour tous sous-ensembles E et F de \mathbb{R} , on note :

$$\mathcal{P}(E,F) = \{ P \in \mathbf{R}[X] \mid P(E) \subset F \} ,$$

à savoir, l'ensemble des éléments de $\mathbf{R}[X]$ dont la valeur en chaque élément de E appartient à F.

PARTIE I - Étude de $\mathcal{P}(\mathbf{Z}, \mathbf{Z})$

Pour tout entier naturel n, on note Γ_n le polynôme défini par :

$$\Gamma_0 = 1$$
 et, pour $n > 0$, $\Gamma_n = \frac{X(X-1)...(X-n+1)}{n!}$.

Dans cette partie, on fixe un entier naturel m.

- I.1) a) Montrer que, pour tout n, le polynôme Γ_n appartient à $\mathcal{P}(\mathbf{Z}, \mathbf{Z})$. (Pour k élément de \mathbf{Z} , on distinguera selon qu'on a $0 \le k < n, k \ge n$ ou k < 0.)
 - b) Montrer que la famille $(\Gamma_n)_{0 \le n \le m}$ forme une base de l'espace vectoriel réel $\mathbf{R}_m[X]$.
- I.2) On considère l'application Δ de $\mathbf{R}[X]$ dans lui-même donnée par $\Delta(P) = P(X+1) P$.
 - a) Justifier que Δ est linéaire et déterminer son noyau.
 - b) Démontrer, pour $n \neq 0$: $\Delta(\Gamma_n) = \Gamma_{n-1}$.
 - c) Démontrer, pour P dans $\mathbf{R}_m[X]: P = \sum_{n=0}^m \Delta^n(P)(0)\Gamma_n$, où Δ^n est défini par $\Delta^0 = \mathrm{Id}_{\mathbf{R}[X]}$ et $\Delta^{n+1} = \Delta \circ \Delta^n$.
- I.3) Soit P un élément de $\mathbf{R}_m[X]$. Montrer que les quatre assertions suivantes sont équivalentes :
 - (i) $P = \sum_{n=0}^{m} d_n \Gamma_n$ avec $d_0, d_1, ..., d_m$ entiers
 - (ii) $P \in \mathcal{P}(\mathbf{Z}, \mathbf{Z})$
 - (iii) P(0), P(1), ..., P(m) sont entiers
 - (iv) il existe m+1 entiers consécutifs en lesquels les valeurs de P sont des entiers.
- I.4) Application. On cherche un polynôme P de degré inférieur ou égal à 4 vérifiant P(0) = 7, P(1) = 87, P(2) = -143, P(3) = -2453 et P(4) = -9897.

a) Montrer qu'un tel polynôme existe et est unique puis déterminer P en utilisant la table des différences finies suivante

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0					
1					
2					
3					
4					

b) Généralisation : écrire en Python un programme permettant de calculer les coordonnées d'un polynôme Q de $\mathbf{R}_n[X]$ dans la base $(\Gamma_k)_{0 \le k \le n}$, connaissant $(Q(k))_{0 < k < n}$.

PARTIE II - Étude de
$$\mathcal{P}(E, \mathbf{Z}_{(p)})$$

Dans toute cette partie p désigne un nombre premier fixé et E une partie infinie de Z.

- II.1) a) Montrer que, pour (k, n) dans $\mathbf{N}^* \times \mathbf{N}^*$, le cardinal de l'ensemble $\{j \in [1; n] \mid v_p(j) = k\}$ est égal à $\left\lceil \frac{n}{p^k} \right\rceil \left\lceil \frac{n}{p^{k+1}} \right\rceil$.
 - b) Justifier la formule suivante due à LEGENDRE : $\forall n \in \mathbf{N}, v_p(n!) = \sum_{k>0} \left[\frac{n}{p^k}\right]$.
- II.2) On dit qu'une suite $(u_n)_{n\in\mathbb{N}}$ d'éléments distincts de E est p-ordonnée dans E si elle vérifie :

$$\forall n \in \mathbf{N}^* \quad v_p \left(\prod_{k=0}^{n-1} (u_n - u_k) \right) = \min_{x \in E} v_p \left(\prod_{k=0}^{n-1} (x - u_k) \right) .$$

- a) Montrer que si $E = \mathbf{Z}$, la suite $(n)_{n \in \mathbf{N}}$ est p-ordonnée.
- b) Montrer par récurrence que, pour tout a dans E, il existe au moins une suite $(u_n)_{n \in \mathbb{N}}$, p-ordonnée dans E et vérifiant $u_0 = a$. Y a-t-il en général unicité d'une telle suite?
- II.3) Dans la suite de cette partie, on considère une suite $(u_n)_{n\in\mathbb{N}}$ p-ordonnée dans E. On lui associe la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par :

$$P_0 = 1$$
 et, pour $n \ge 1$, $P_n = \prod_{k=0}^{n-1} \frac{X - u_k}{u_n - u_k}$.

Soit m dans \mathbf{N} et P dans $\mathbf{R}_m[X]$. Montrer que les assertions suivantes sont équivalentes :

- (i) $P \in \mathbf{R}_m[X] \cap \mathcal{P}(E, \mathbf{Z}_{(p)}),$
- (ii) $P = \sum_{n=0}^{m} c_n P_n \text{ avec } c_0, c_1, ..., c_m \text{ dans } \mathbf{Z}_{(p)},$
- (iii) $P(u_0), P(u_1), \ldots, P(u_m)$ sont dans $\mathbf{Z}_{(p)}$.
- II.4) On pose $\omega(0) = 0$ et, pour tout élément n de \mathbf{N}^* , on note $\omega(n)$ l'entier $v_p\left(\prod_{k=0}^{n-1}(u_n u_k)\right)$. Montrer que si P appartient à $\mathbf{R}_m[X] \cap \mathcal{P}(E, \mathbf{Z}_{(p)})$, alors les coefficients de $p^{\omega(m)}P$ appartiennent à $\mathbf{Z}_{(p)}$.

PARTIE III - Caractérisation de $\mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$

Dans toute cette partie, p désigne un nombre premier.

On note $p\mathbf{N}$ l'ensemble des entiers naturels multiples de p et $\mathbf{N} \setminus p\mathbf{N}$ l'ensemble des entiers naturels non multiples de p. Pour tout entier naturel n, on pose :

$$\varphi_p(n) = n + 1 + \left[\frac{n}{p-1}\right]$$
 et $\omega_p(n) = \sum_{k>0} \left[\frac{n}{(p-1)p^k}\right]$.

III.1) À l'aide de la division euclidienne par p-1, montrer

$$\left[\frac{\varphi_p(n)}{p}\right] = \left[\frac{n}{p-1}\right] \quad \text{et} \quad \varphi_p(n) \in \mathbf{N} \setminus p\mathbf{N} .$$

- III.2) En déduire que :
 - a) φ_p n'est autre que l'unique bijection croissante de **N** sur **N** \ p**N**,
 - b) pour tout entier naturel n, $v_p((\varphi_p(n))!) = \omega_p(n)$.
- III.3) Vérifier que pour n entier naturel :
 - a) $\omega_p(n) \leq 2n$,
 - b) si $n , alors <math>\omega_p(n) = 0$.
- III.4) Montrer que, pour (r, s) dans $p\mathbf{N} \times \mathbf{N}$, $v_p(r \varphi_p(s)) = 0$.
- III.5) En déduire que la suite $(\varphi_p(n))_{n\in\mathbb{N}}$ est une suite p-ordonnée dans $\mathbb{N}\setminus p\mathbb{N}$.
- III.6) Soit P un élément de $\mathbf{R}_m[X]$.
 - a) Montrer que P appartient à $\mathcal{P}\left(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)}\right)$ si et seulement si $P\left(\varphi_p(k)\right)$ appartient à $\mathbf{Z}_{(p)}$ pour $k=0,\,1,\,\ldots,\,m$.
 - b) Montrer que si P appartient à $\mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$ alors les coefficients de $p^{\omega_p(m)}P$ sont dans $\mathbf{Z}_{(p)}$.

PARTIE IV - Un algorithme pour déterminer les éléments de $\mathcal{P}(\mathbf{P},\mathbf{Z})$

IV.1) En considérant $\frac{(X-1)(X-2)(X-3)}{24}$, montrer $\mathcal{P}(\mathbf{Z}, \mathbf{Z}) \neq \mathcal{P}(\mathbf{P}, \mathbf{Z})$.

On admet le théorème de DIRICHLET suivant (que l'on ne cherchera pas à démontrer) : Si a et b sont deux entiers naturels premiers entre eux, alors il existe au moins un entier naturel k tel que a+bk soit un nombre premier.

- IV.2) Soit p un nombre premier, on pose $E_p = \{p\} \cup (\mathbf{N} \setminus p\mathbf{N})$. Montrer
 - a) $\mathcal{P}(\mathbf{P}, \mathbf{Z}_{(p)}) \subset \mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)}).$
 - b) $\mathcal{P}(\mathbf{P}, \mathbf{Z}_{(p)}) = \mathcal{P}(E_p, \mathbf{Z}_{(p)}).$
- IV.3) Montrer $\mathcal{P}(\mathbf{P}, \mathbf{Z}) = \bigcap_{p \in \mathbf{P}} \mathcal{P}(E_p, \mathbf{Z}_{(p)}).$
- IV.4) Soit m un entier naturel et Q un élément de $\mathbf{R}_m[X]$. Montrer que les deux assertions suivantes sont équivalentes :
 - (i) Q appartient à $\mathcal{P}(\mathbf{P}, \mathbf{Z})$,
 - (ii) Pour tout nombre premier $p \leq m+1$, Q(p) appartient à \mathbf{Z} , et, pour tout entier naturel $k \leq 2m+1$, $k^{2m}Q(k)$ appartient à \mathbf{Z} .
- IV.5) Appliquer la caractérisation précédente pour démontrer que, quel que soit le nombre premier p, on a la congruence suivante

$$(p+1)(p-1)(p-2)(p-3)(p-5)(p-7)(p-193) \equiv 0 \pmod{2903040}$$
.

CAPESA 1997 ET 2002, CAPES 2002

PARTIE I - Étude de $P(\mathbf{Z}, \mathbf{Z})$

- I.1) a) Soit k un entier relatif et n un entier naturel. Si k est supérieur à n, on a $\Gamma_n(x) = \binom{k}{n}$. Si k est strictement négatif, on a $\Gamma_n(k) = (-1)^n \binom{-k+n-1}{n}$. Enfin si k est compris entre 0 et n-1, $\Gamma_n(k)$ est nul. Par conséquent $\Gamma_n \in \mathcal{P}(\mathbf{Z}, \mathbf{Z})$.
 - b) La famille $(\Gamma_n)_{0 \le n \le m}$ étant échelonnée en degrés, de 0 à m, on a affaire à une famille de polynômes non nuls de $\mathbf{R}_m[X]$, donc libre et, par cardinalité, elle forme une base de $\mathbf{R}_m[X]$.
- I.2) a) L'opérateur de translation de 1 étant linéaire (comme toute composition à droite), Δ est différence de deux applications linéaires et est donc elle aussi une application linéaire. Soit P un polynôme dans $\mathbf{R}[X]$ tel que $\Delta(P)=0$. En particulier le polynôme P-P(0) s'annule sur \mathbf{Z} et donc est identiquement nul. Il en résulte que P est constant. Réciproquement si P est un polynôme constant, il est dans le noyau de Δ . Par conséquent le noyau de Δ est formé des polynômes constants.
 - b) Soit n un entier naturel non nul. On a, même si n=1, en tenant compte de $\Gamma_0=1$,

$$\Gamma_{n} = \Gamma_{n-1} \frac{X - n + 1}{n} = \frac{X}{n} \Gamma_{n-1} (X - 1)$$

$$\Delta(\Gamma_{n}) = \frac{X + 1}{n} \Gamma_{n-1} - \Gamma_{n-1} \frac{X - n + 1}{n} = \frac{X + 1 - X + n - 1}{n} \Gamma_{n-1}$$

i.e.
$$\Delta(\Gamma_n) = \Gamma_{n-1}$$
.

c) Par linéarité, il suffit de vérifier la formule demandée sur une base de $\mathbf{R}_m[X]$ et donc sur les polynômes $(\Gamma_n)_{0 \leq n \leq m}$. Or pour n et k dans [0; m], on a, d'après ce qui précède, $\Delta^k(\Gamma_n) = \Gamma_{n-k}$, si $k \leq n$, ou $\Delta^k(\Gamma_n) = 0$ sinon car Γ_0 est dans le noyau de Δ d'après I.2.a). Comme 0 est racine de tous les polynômes Γ_n sauf Γ_0 , il vient $\Delta^k(\Gamma_n)(0) = 0$ sauf si n = k auquel cas $\Delta^n(\Gamma_n) = 1$. La formule en résulte dans ce cas et donc dans le cas

général :
$$P = \sum_{n=0}^{m} \Delta^{n}(P)(0)\Gamma_{n}.$$

I.3) Si (i) est vrai, (ii) l'est aussi d'après I.1.a et puisque \mathbb{Z} est un anneau. Si (ii) est vrai, alors (iii) l'est car $[0; m] \subset \mathbb{Z}$. Et si (iii) est vrai, alors (iv) aussi car [0, 1, ..., m] sont m+1 entiers consécutifs.

Si (iv) est vrai, soit x_0 tel que $P(x_0)$, $P(x_0 + 1)$, ..., $P(x_0 + n)$ soient tous entiers relatifs. On note T l'opérateur de translation $P \mapsto P(X + 1)$, de sorte qu'on a $\Delta = T$ – Id. De plus T est inversible et commute avec Δ , donc T^{x_0} existe même si x_0 est négatif et commute avec Δ . Il vient, pour n dans [0; m]:

$$\left(\Delta^n \circ T^{x_0}\right)(P)(0) = \left(T^{x_0} \circ \Delta^n\right)(P)(0) = \Delta^n(P)(x_0)$$

et donc, en utilisant I.2.c),

$$T^{x_0}(P) = \sum_{n=0}^{m} \Delta^n(P)(x_0) \Gamma_n$$

ce qui entraı̂ne $T^{x_0}(P) \in \mathcal{P}(\mathbf{Z}, \mathbf{Z})$, d'après I.1.a). Comme $z \mapsto z+1$ est une bijection de \mathbf{Z} dans lui-même, T préserve $\mathcal{P}(\mathbf{Z}, \mathbf{Z})$ et il en résulte que (i) est vrai.

Par conséquent les quatre conditions (i), (ii), (iii) et (iv) sont équivalentes.

-1

I.4	a)	On	remplit	successive ment	la	table	des	différences	finies
-----	----	----	---------	-----------------	----	-------	-----	-------------	--------

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0	7				
1	87				
2	-143				
3	-2453				
4	-9897				

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0	7	80			
1	87	-230			
2	-143	-2310			
3	-2453	-7444			
4	-9897				

en complétant une colonne grâce à la précédente

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0	7	80	-310		
1	87	-230	-2080		
2	-143	-2310	-5134		
3	-2453	-7444			
4	-9897				

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0	7	80	-310	-1770	
1	87	-230	-2080	-3054	
2	-143	-2310	-5134		
3	-2453	-7444			
4	-9897				

x	$\Delta^0 P$	$\Delta^1 P$	$\Delta^2 P$	$\Delta^3 P$	$\Delta^4 P$
0	7	80	-310	-1770	-1284
1	87	-230	-2080	-3054	
2	-143	-2310	-5134		
3	-2453	-7444			
4	-9897				

et donc, si P existe, il vérifie $(\Delta^k(P)(0))_{0 \le k \le 4} = (7, 80, -310, -1770, -1284)$. Il résulte de I.2.c) que, s'il existe, P est unique. Réciproquement, en posant $P = 7 + 80\Gamma_1 - 310\Gamma_2 - 1770\Gamma_3 - 1284\Gamma_4$ et puisque $(\Gamma_n)_{0 \le n \le 4}$ est une base de $\mathbf{R}_4[X]$ d'après I.1.b), P vérifie $(\Delta^k(P)(0))_{0 \le k \le 4} = (7, 80, -310, -1770, -1284)$. En effectuant les calculs dans la dernière des tables précédentes à partir de la ligne du haut, on obtient $(P(k))_{0 \le k \le 4} = (7, 87, -143, -2453, -9897)$. Il résulte que

$$P$$
 existe et est unique, égal à $7+80\Gamma_1-310\Gamma_2-1770\Gamma_3-1284\Gamma_4.$

b) On se donne une liste ℓ de taille n+1 et on construit une liste c grâce à l'algorithme suivant. On initialise c à $[\]$. Puis, tant que ℓ est distincte de $[\]$, on augmente c de $\ell[0]$ et on affecte la liste des différences entre les termes successifs de ℓ à ℓ .

```
def differences(x):
    y=x[:]
    y.pop()
    return map(lambda u,v: u-v,x[1:],y)

def delta(x):
    c=[]
    while(len(x)>0):
        c.append(x[0])
        x=differences(x)
        c.append(x[0])
    return c
```

PARTIE II - Étude de $\mathcal{P}(E, \mathbf{Z}_{(p)})$

II.1) a) Soit (k, n) dans $\mathbf{N}^* \times \mathbf{N}^*$. On a $p^k \mathbf{N} = \{j \in \mathbf{N} \mid v_p(j) \geq k\}$ par définition de la valuation p-adique et donc

$${j \in \mathbf{N} \mid v_p(j) = k} = p^k \mathbf{N} \setminus p^{k+1} \mathbf{N}$$
.

En prenant l'intersection avec [1; n], il vient

$${j \in [1; n] \mid v_p(j) = k} = p^k \left[1; \left[\frac{n}{p^k} \right] \right] \setminus p^{k+1} \left[1; \left[\frac{n}{p^{k+1}} \right] \right] .$$

Dans le membre de droite, le second ensemble étant inclus dans le premier, il vient par cardinalité $|\{j \in [1;n] \mid v_p(j) = k\}| = \left[\frac{n}{p^k}\right] - \left[\frac{n}{p^{k+1}}\right].$

b) Si n=0, la formule donne 0 comme somme de termes nuls. Soit n dans \mathbf{N}^* . Puisque v_p est à valeurs dans \mathbf{N} , on a

$$[1; n] = \coprod_{k>0} \{ j \in [1; n] \mid v_p(j) = k \} ,$$

la réunion étant en fait finie puisqu'à partir de $k = 1 + \left[\log_p(n)\right]$ les ensembles considérés sont vides. De plus la valuation d'un produit étant la somme des valuations, il vient

$$v_p(n!) = \sum_{j=1}^n v_p(j) = \sum_{k \ge 0} \sum_{j \in [1;n], v_p(j) = k} v_p(j) = \sum_{k \ge 0} k \cdot |\{j \in [1;n] \mid v_p(j) = k\}|,$$

la somme étant également, en fait, finie. Donc, par transformation d'Abel,

$$v_p(n!) = 0 \left[\frac{n}{p^0} \right] + \sum_{k>0} (k - (k-1)) \left[\frac{n}{p^k} \right]$$

ou encore
$$v_p(n!) = \sum_{k>0} \left[\frac{n}{p^k}\right]$$
.

II.2) a) Soit n dans \mathbf{N}^* et x dans \mathbf{Z} . On a $\Gamma_n(x) \in \mathbf{Z}$ et donc

$$v_p\left(\frac{\prod_{k=0}^{n-1}(x-k)}{\prod_{k=0}^{n-1}(n-k)}\right) \ge 0$$
.

Puisque la valuation d'un produit est la somme des valuations, il vient

$$v_p\left(\prod_{k=0}^{n-1}(x-k)\right) \ge v_p\left(\prod_{k=0}^{n-1}(n-k)\right),$$

ce qui montre que $(n)_{n \in \mathbb{N}}$ est p-ordonnée.

b) On pose $u_0 = a$ et on construit la suite (u_n) par récurrence. Soit donc n dans \mathbb{N}^* tel que les n premiers termes de la suite aient été définis. On note $F = E \setminus \{u_0, \dots, u_{n-1}\}$.

L'application $x \mapsto \prod_{k=0}^{n-1} (x - u_k)$, pour x dans F, est à valeurs dans \mathbf{Z} et ne s'annule pas, par construction de F et puisque $E \subset \mathbf{Z}$. On note G son ensemble image. Puisque $v_p(G)$

par construction de F et puisque $E \subset \mathbf{Z}$. On note G son ensemble image. Puisque $v_p(G)$ est une partie non vide de \mathbf{N} (puisque E est infini, donc F aussi), elle admet un plus petit élément. On dispose donc de u_n dans F tel que, pour tout x dans F,

$$v_p\left(\prod_{k=0}^{n-1}(x-u_k)\right) \ge v_p\left(\prod_{k=0}^{n-1}(u_n-u_k)\right),$$

ce qui permet de construire la suite (u_n) par récurrence, d'après la convention faite sur $v_p(0)$ en ce qui concerne les éléments x qui ne sont pas dans F.

Il existe au moins une suite $(u_n)_{n \in \mathbb{N}}$, p-ordonnée dans E et vérifiant $u_0 = a$.

Dans le cas étudié précédemment, avec $E = \mathbf{Z}$ et $u_0 = 0$, la propriété de u_1 est $v_p(u_1) = \min_{x \in \mathbf{Z}} v_p(x)$, i.e. $v_p(u_1) = 0$ ou encore u_1 premier à p. Par conséquent,

en général il n'y a pas unicité d'une telle suite.

II.3) Soit x et y dans $\mathbf{Z}_{(p)}$, on dispose donc de a et b premiers à p tels que ax et by soient entiers. Il en résulte que $(ab)(x \pm y)$ ainsi que (ab)(xy) sont entiers et donc que $x \pm y$ et xy sont dans $\mathbf{Z}_{(p)}$. Par conséquent $\mathbf{Z}_{(p)}$ est un sous-anneau de \mathbf{Q} .

Par définition d'une suite p-ordonnée, pour n entier naturel, P_n prend, sur E, des valeurs dans $\mathbf{Z}_{(p)}$. Puisque $\mathbf{Z}_{(p)}$ est un anneau, il en résulte $(ii) \Longrightarrow (i)$.

L'assertion $(i) \Longrightarrow (iii)$ est immédiate en spécialisant à $u_0, ..., u_m$.

Comme la suite (P_n) est échelonnée en degrés entre 0 et m, $(P_n)_{0 \le n \le m}$ forme une base de $\mathbf{R}_m[X]$. Soit donc P dans $\mathbf{R}_m[X] \cap \mathcal{P}(E, \mathbf{Z}_{(p)})$, on dispose de c_0, c_1, \ldots, c_m dans \mathbf{R} tels que

$$P = \sum_{n=0}^{m} c_n P_n$$
. En spécialisant, il vient, pour n dans $[0; m]$, $P(u_n) = c_n + \sum_{k=0}^{n-1} c_k P_k(u_n)$. Il

en résulte que les coefficients $(c_n)_{0 \le n \le m}$ sont solutions d'un système linéaire triangulaire à coefficients dans $\mathbf{Z}_{(p)}$ et de diagonale 1. Par récurrence immédiate, puisque $\mathbf{Z}_{(p)}$ est un anneau, il en résulte que c_0, c_1, \ldots, c_m sont dans $\mathbf{Z}_{(p)}$, i.e. $(iii) \Longrightarrow (ii)$.

Ainsi les trois conditions sont équivalentes.

II.4) Par définition, pour n dans \mathbf{N}^* , $p^{-\omega(n)}\prod_{k=0}^{n-1}(u_n-u_k)$ est un rationnel qui peut s'écrire comme le quotient de deux entiers premiers à p et donc son inverse appartient à $\mathbf{Z}_{(p)}$. Il en résulte que $p^{\omega(n)}P_n$ est à coefficients dans $\mathbf{Z}_{(p)}$. A fortiori, puisqu'on a affaire à une suite p-ordonnée, pour $m \geq n$, $p^{\omega(m)}P_n$ est à coefficients dans $\mathbf{Z}_{(p)}$. Comme ce dernier est un anneau, il résulte de II.3) et de $P_0 = 1$ que, si P appartient à $\mathbf{R}_m[X] \cap \mathcal{P}(E, \mathbf{Z}_{(p)})$, alors les coefficients de $p^{\omega(m)}P$ appartiennent à $\mathbf{Z}_{(p)}$.

PARTIE III - Caractérisation de $\mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$

III.1) Puisque p est premier, p-1 est un entier naturel non nul et on peut donc effectuer la division euclidienne de n par p-1. On dispose donc de q et r, entiers, avec $0 \le r < p-1$ et tels que n=(p-1)q+r. Il vient $\varphi_p(n)=(p-1)q+r+1+q=pq+r+1$ et, comme $0 \le r+1 < p$, on a affaire à la division euclidienne de $\varphi_p(n)$ par p et ainsi $\left[\frac{\varphi_p(n)}{p}\right]=q$. Autrement dit

$$\left[\frac{\varphi_p(n)}{p}\right] = \left[\frac{n}{p-1}\right].$$

D'après ce qui précède le reste de la division euclidienne de $\varphi(n)$ par p est r+1 et il n'est donc pas nul. Par conséquent $\varphi(n) \in \mathbb{N} \setminus p\mathbb{N}$.

III.2) a) Comme la fonction partie entière est croissante, φ_p est somme d'une fonction affine strictement croissante et d'une fonction croissante (en tant que composée de deux fonctions croissantes), donc φ_p est strictement croissante. C'est donc une bijection croissante sur son image, et cette image est incluse dans $\mathbf{N} \setminus p\mathbf{N}$ d'après ce qui précède.

Réciproquement si m appartient à $\mathbf{N} \setminus p\mathbf{N}$, on écrit sa division euclidienne par p sous la forme m = pq + r avec 0 < r < p. Les calculs précédents montrent que m est l'image de (p-1)q + (r-1) par φ_p , puisque $0 \le r-1 < p-1$.

Enfin $\mathbf{N} \setminus p\mathbf{N}$ est une partie infinie de \mathbf{N} et donc il existe une unique bijection croissante de \mathbf{N} sur $\mathbf{N} \setminus p\mathbf{N}$. Par conséquent φ_p est l'unique bijection croissante de \mathbf{N} sur $\mathbf{N} \setminus p\mathbf{N}$.

b) On reprend les notations de III.1): n = (p-1)q + r et $\varphi_p(n) = pq + r + 1$ avec $0 \le r < p-1$. Soit k dans \mathbf{N}^* . On effectue la division euclidienne de q par p^{k-1} . On dispose donc de a et b entiers, avec $0 \le b < p^{k-1}$ et tels que $q = p^{k-1}a + b$. Il vient

$$\varphi_p(n) = p^k a + (pb + r + 1)$$
 et $n = p^{k-1}(p-1)a + ((p-1)b + r)$

avec $0 \le pb+r+1 < p(p^{k-1}-1)+p=p^k$ et $0 \le (p-1)b+r < (p-1)(p^{k-1}-1)+p-1=(p-1)p^{k-1}$. Il en résulte $\left[\frac{\varphi_p(n)}{p^k}\right]=\left[\frac{n}{(p-1)p^{k-1}}\right]$. Par conséquent, en utilisant la formule de Legendre et en translatant un indice, il vient

$$v_p((\varphi_p(n))!) = \sum_{k\geq 1} \left[\frac{\varphi_p(n)}{p^k}\right] = \sum_{k\geq 0} \left[\frac{n}{(p-1)p^k}\right],$$

i.e.
$$v_p((\varphi_p(n))!) = \omega_p(n)$$
.

III.3) a) Soit n un entier naturel. Puisqu'on a affaire à des séries à termes positifs, et puisque la partie entière d'un nombre lui est inférieure, on a, en minorant p par 2,

$$\sum_{k \ge 0} \left[\frac{n}{(p-1)p^k} \right] \le \sum_{k \ge 0} \frac{n}{(p-1)p^k} \le \sum_{k \ge 0} \frac{n}{2^k} = 2n,$$

i.e.
$$|\omega_p(n)| \leq 2n$$
.

- b) Soit n un entier naturel avec n < p-1, alors tous les termes de la série $\sum \left\lfloor \frac{n}{(p-1)p^k} \right\rfloor$ sont nuls et donc sa somme aussi, i.e. $\omega_p(n) = 0$.
- III.4) Soit (r, s) dans $p\mathbf{N} \times \mathbf{N}$, alors p divise r mais pas $\varphi_p(s)$, donc il ne divise pas leur différence et ainsi $v_p(r \varphi_p(s)) = 0$.
- III.5) Soit x dans $\mathbf{N} \setminus p\mathbf{N}$, i.e. dans $\varphi_p(\mathbf{N})$ et n dans \mathbf{N}^* . On dispose de m dans \mathbf{N} tel que $x = \varphi_p(m)$. Si k < n, alors $\prod_{k=0}^{n-1} (x \varphi_p(k)) = 0$ et la valuation p-adique du membre de droite est donc $+\infty$. Sinon on a, en utilisant la question précédente pour la troisième égalité puisque $v_p(x-k) = v_p(\varphi_p(m)-k) = 0$ lorsque k appartient à $p\mathbf{N}$, ce qui est en particulier le cas si $\varphi_p(n-1) < k < \varphi_p(n)$ et permet d'écrire la quatrième égalité :

$$v_{p}\left(\prod_{k=0}^{n-1}(x-\varphi_{p}(k))\right) = \sum_{k=0}^{n-1}v_{p}(x-\varphi_{p}(k))$$

$$= \sum_{0\leq k\leq \varphi_{p}(n-1), k\notin p\mathbf{N}}v_{p}(x-k)$$

$$= \sum_{0\leq k\leq \varphi_{p}(n-1)}v_{p}(x-k)$$

$$= \sum_{0\leq k<\varphi_{p}(n)}v_{p}(x-k)$$

$$= v_{p}\left(\frac{x!}{(x-\varphi_{p}(n))!}\right)$$

$$= v_{p}((\varphi_{p}(n))!) + v_{p}\left(\begin{pmatrix} x\\ \varphi_{p}(n) \end{pmatrix}\right)$$

$$\geq v_{p}((\varphi_{p}(n))!)$$

et, de plus, il y a égalité lorsque $x = \varphi_p(n)$. On en déduit que la suite $(\varphi_p(n))_{n \in \mathbb{N}}$ est une suite p-ordonnée dans $\mathbb{N} \setminus p\mathbb{N}$.

III.6) a) Soit P un élément de $\mathbf{R}_m[X]$. D'après la question précédente et l'équivalence entre (i) et (iii) dans II.3), P appartient à $\mathcal{P}\left(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)}\right)$ si et seulement si

$$P\left(\varphi_{p}(k)\right)$$
 appartient à $\mathbf{Z}_{(p)}$ pour $k=0,\,1,\,\ldots,\,m.$

b) Soit P un élément de $\mathbf{R}_m[X] \cap \mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$. D'après la question précédente, en appliquant II.4) et en utilisant la formule III.2.b), il vient les coefficients de $p^{\omega_p(m)}P$ sont dans $\mathbf{Z}_{(p)}$.

PARTIE IV - Un algorithme pour déterminer les éléments de $\mathcal{P}(\mathbf{P}, \mathbf{Z})$

- IV.1) Soit $P = \frac{(X-1)(X-2)(X-3)}{24}$. On a $P(6) = \frac{5}{2} \notin \mathbf{Z}$ et donc P n'appartient pas à $\mathcal{P}(\mathbf{Z}, \mathbf{Z})$. Par ailleurs pour p premier, avec p > 5, on a $pP(p) = \Gamma_4(p)$ et on a $v_p(\Gamma_4(p)) = v_p(24) + v_p(\Gamma_4(p)) = v_p(p(p-1)(p-2)(p-3)) = 1$ puisque p est premier à 24, p-1, p-2 et p-3. On en déduit que P(p) est entier. Enfin, P(2) = P(3) = 0 et donc P appartient à $\mathcal{P}(\mathbf{P}, \mathbf{Z})$. On en déduit $\mathcal{P}(\mathbf{Z}, \mathbf{Z}) \neq \mathcal{P}(\mathbf{P}, \mathbf{Z})$.
- IV.2) a) Soit P dans $\mathcal{P}(\mathbf{P}, \mathbf{Z}_{(p)})$ et a dans $\mathbf{N} \setminus p\mathbf{N}$. On note m le degré de P et, puisque \mathbf{P} est infini, on dispose de m+1 nombres premiers distincts $(p_i)_{0 \leq i \leq m}$. Les équations $P(p_i a) \in \mathbf{Z}$ fournissent un système linéaire de matrice associée une matrice de Vandermonde inversible, puisque les p_i sont distincts, et donc la solution est donnée par les coefficients de P relativement à la base $((X-a)^i)_{0 \leq i \leq m}$. Ceux-ci sont donc obtenus par les formules de Cramer et ainsi sont rationnels. Or P n'a qu'un nombre fini de coefficients non nuls, on dipose ainsi de ω entier et c_0, \ldots, c_m dans $\mathbf{Z}_{(p)}$ tels que $p^\omega P = \sum_{i=0}^m c_i (X-a)^i$.

Puisque a n'appartient pas à $p\mathbf{N}$, il est premier à p et donc à p^{ω} . D'après le théorème de DIRICHLET, on dispose alors de k entier naturel tel que $a + kp^{\omega}$ soit premier et donc tel que $P(a + kp^{\omega})$ soit dans $\mathbf{Z}_{(p)}$. Or

$$P(a + kp^{\omega}) - P(a) = \sum_{i=1}^{m} k^{i} p^{(i-1)\omega} c_{i}$$

et donc $P(a+kp^{\omega})-P(a)$ appartient à $\mathbf{Z}_{(p)}$ puisque ce dernier est un anneau contenant \mathbf{Z} . Il en résulte que P(a) appartient lui aussi à $\mathbf{Z}_{(p)}$ et donc $\mathcal{P}(\mathbf{P},\mathbf{Z}_{(p)})\subset\mathcal{P}(\mathbf{N}\setminus p\mathbf{N},\mathbf{Z}_{(p)})$.

- b) L'inclusion résulte de la question précédente puisque $E_p \subset \mathbf{P} \cup (\mathbf{N} \setminus p\mathbf{N})$ et l'inclusion réciproque du fait que \mathbf{P} est inclus dans E_p puisque tout nombre premier autre que p est premier à p et appartient donc à $\mathbf{N} \setminus p\mathbf{N}$. Il vient donc $\boxed{\mathcal{P}(\mathbf{P}, \mathbf{Z}_{(p)}) = \mathcal{P}(E_p, \mathbf{Z}_{(p)})}$.
- IV.3) Un rationnel est entier si et seulement si son dénominateur n'est divisible par aucun nombre premier et donc $\mathbf{Z} = \bigcap_{p \in \mathbf{P}} \mathbf{Z}_{(p)}$. On en déduit

$$\mathcal{P}(\mathbf{P},\mathbf{Z}) = \bigcap_{p \in \mathbf{P}} \mathcal{P}(\mathbf{P},\mathbf{Z}_{(p)})$$

et donc, en utilisant la question précédente $\mathcal{P}(\mathbf{P}, \mathbf{Z}) = \bigcap_{p \in \mathbf{P}} \mathcal{P}(E_p, \mathbf{Z}_{(p)})$.

IV.4) Si Q appartient à $\mathcal{P}(\mathbf{P}, \mathbf{Z})$, alors pour tout nombre premier p, en particulier inférieur à m+1, Q(p) est entier. De plus, en utilisant IV.2.a) on en déduit que Q appartient à $\mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$. On en déduit, grâce à III.6.b) que les coefficients de $p^{\omega_p(m)}Q$ sont dans $\mathbf{Z}_{(p)}$ et donc aussi ceux de $p^{2m}Q$, en vertu de III.3.a). Il en résulte que $X^{2m}Q$ prend des valeurs dans $\mathbf{Z}_{(p)}$ sur

 $p\mathbf{N}$. Mais, d'après IV.3, il en va de même pour Q sur $\mathbf{N} \setminus p\mathbf{N}$ et donc a fortiori de $X^{2m}Q$. Par conséquent $X^{2m}Q$ appartient à $\bigcap_{p\in\mathbf{P}} \mathcal{P}(\mathbf{Z},\mathbf{Z}_{(p)})$, et prend donc des valeurs entières sur \mathbf{Z} , donc en particulier sur [1;2m+1].

Réciproquement si, pour tout entier naturel $k \leq 2m+1$, $k^{2m}Q(k)$ appartient à \mathbf{Z} alors, pour j dans [1;m] et p dans \mathbf{P} , on a $\varphi_p(j) \leq \varphi_p(m) \leq m+1+\frac{m}{p-1} \leq 2m+1$ et donc $\varphi_p(k)^{2m}Q(\varphi_p(k))$ appartient à $\mathbf{Z}_{(p)}$ et donc aussi $Q(\varphi_p(k))$ puisque $\varphi_p(k)$ est premier à p. On en déduit, en utilisant III.6.a), que Q appartient à $\mathcal{P}(\mathbf{N} \setminus p\mathbf{N}, \mathbf{Z}_{(p)})$.

D'après III.6.b) cela entraı̂ne que les coefficients de $p^{\omega_p(m)}Q$ sont dans $\mathbf{Z}_{(p)}$ et donc, pour p > m+1, en utilisant III.3.b), Q(p) appartient à $\mathbf{Z}_{(p)}$, ce qui implique que Q appartient à $\mathcal{P}(E_p, \mathbf{Z}_{(p)})$.

Si, pour $p \leq m+1$, Q(p) est entier, il est a fortiori dans $\mathbf{Z}_{(p)}$ et on conclut encore que Q appartient à $\mathcal{P}(E_p, \mathbf{Z}_{(p)})$. Et donc, grâce à IV.2.b), Q appartient à $\mathcal{P}(\mathbf{P}, \mathbf{Z})$. Au final les deux propriétés sont équivalentes.

IV.5) On applique ce qui précède avec m = 7 et

$$Q = \frac{(X+1)(X-1)(X-2)(X-3)(X-5)(X-7)(X-193)}{2 903 040}.$$

Pour p premier inférieur à 8, on a Q(p)=0 et donc la première propriété est vérifiée. On décompose 2 903 040 en facteurs premiers. On trouve successivement 2 903 040 = 40×72 576, $72\ 576=4\times 18\ 144$, $18\ 144=4\times 4\ 536$, $4\ 536=4\times 1\ 134$, $1\ 134=2\times 567$, $567=9\times 63$ et donc 2 903 040 = $2^{10}\times 3^4\times 5\times 7$. Il s'agit donc de vérifier que, pour $1\le k\le 15$, $k^{14}(k+1)(k-1)(k-2)(k-3)(k-5)(k-7)(k-193)$ est divisible par 2^{10} , par 3^4 , par 5 et par 7. Or

- On a $-1 \equiv 6 \mod 7$ et $193 \equiv 4 \mod 7$, donc on a $(k+1)(k-1)(k-2)(k-3)(k-5)(k-7)(k-193) \equiv (k-1)(k-2)(k-3)(k-4)(k-5)(k-6)(k-7) \mod 7$ et ce dernier produit est nul modulo 7.
- De même $-1 \equiv 4 \mod 5$, donc on a $(k+1)(k-1)(k-2)(k-3)(k-5) \equiv (k-1)(k-2)(k-3)(k-4)(k-5) \mod 5$ et ce dernier produit est nul modulo 5.
- Modulo 9, on a $-1 \equiv 8 \mod 9$ et $193 \equiv 4 \mod 9$, donc si $k \equiv 2 \mod 3$, alors l'un des termes parmi k+1, k-2 et k-5 est divisible par 9 tandis que les deux autres sont divisibles par 3. Donc leur produit est divisible par 3^4 . Si $k \equiv 1 \mod 3$, alors la même propriété est vraie pour les termes k-1, k-7 et k-193. Enfin si $k \equiv 0 \mod 3$, alors 3^4 divise k^{14} . Donc dans tous les cas le produit $k^{14}(k+1)(k-1)(k-2)(k-3)(k-5)(k-7)(k-193)$ est divisible par 3^4 .
- Enfin si k est pair, 2^{10} divise k^{14} . Sinon on raisonne modulo 8 en remarquant que 193 est congru à 1 modulo 8. Les termes k+1, k-1, k-3, k-5, k-7 et k-193 forment donc modulo 8 une suite arithmétique de raison -2, de termes congrus à 0 modulo 2. Il en résulte que parmi eux se trouvent au moins un terme divisible par 8, deux autres divisibles par 4 et trois autres divisibles par 2. Le produit est donc divisible par 2 à la puissance $3+2\times 2+3\times 1$, i.e. 10.

On a donc, pour p premier,

$$(p+1)(p-1)(p-2)(p-3)(p-5)(p-7)(p-193) \equiv 0 \pmod{2903040}.$$