Première composition de mathématiques Mines-Ponts – MP

Dans tout ce problème E est un espace vectoriel complexe de dimension n avec $n \ge 1$. Le but de ce problème est d'étudier les applications semi-linéaires de l'espace vectoriel E dans lui même. Une application u de E dans lui-même est semi-linéaire si, en désignant par \overline{a} le complexe conjugué de a:

 $\forall (a,b) \in \mathbf{C}^2, \, \forall (x,y) \in E^2, \, u(ax+by) = \overline{a}u(x) + \overline{b}u(y).$

Un nombre complexe μ est une valeur co-propre de l'application semi-linéaire u si : $\exists x \in E \setminus \{0\}, u(x) = \mu x$. Le vecteur x est un vecteur co-propre associé à la valeur co-propre μ .

PARTIE I

Soit A dans $\mathcal{M}_n(\mathbf{C})$ et u une application semi-linéaire de l'espace vectoriel E. Le but de cette partie est d'étudier ses valeurs et vecteurs co-propres.

.1) Premières propriétés

- a) Démontrer qu'étant donné un vecteur x différent de 0, appartenant à l'espace E, il existe au plus un nombre complexe μ tel que la relation $u(x) = \mu x$ ait lieu.
- b) Démontrer que, si le nombre complexe μ est une valeur co-propre de u alors, pour tout réel θ , $\mu e^{i\theta}$ est également valeur co-propre de u et exprimer un vecteur co-propre associé à $\mu e^{i\theta}$ en fonction d'un vecteur co-propre x associé à la valeur co-propre μ et du réel θ .
- c) Étant donné une valeur co-propre μ de u, on définit E_{μ} par $E_{\mu} = \{x \in E \mid u(x) = \mu x\}$. Est-ce que l'ensemble E_{μ} est un espace vectoriel complexe? réel?
- d) Étant donné une application semi-linéaire v, étudier la linéarité de la composée $u \circ v$.

.2) Matrice associée à une application semi-linéaire

Soit $(e_i)_{1 \leq i \leq n}$ une base de l'espace vectoriel E. À un vecteur x de coordonnées x_1, x_2, \dots, x_n est associée une matrice colonne X d'éléments x_1, x_2, \dots, x_n appelée (abusivement) vecteur.

- a) Démontrer qu'à u est associée dans la base $(e_i)_{1 \le i \le n}$ de E une matrice A dans $\mathcal{M}_n(\mathbf{C})$ telle que la relation y = u(x) s'écrive : $Y = A\overline{X}$, où \overline{X} est la matrice complexe conjuguée de X.
- b) Soit A et B les matrices associées à u dans les bases $(e_i)_{1 \leq i \leq n}$ et $(f_i)_{1 \leq i \leq n}$ respectivement. Soit S la matrice de passage de la base $(e_i)_{1 \leq i \leq n}$ à la base $(f_i)_{1 \leq i \leq n}$. Exprimer B en fonction de A et S.

Étant donné A dans $\mathcal{M}_n(\mathbf{C})$, un vecteur X différent de 0 est un vecteur co-propre de A, associé à la valeur co-propre μ , si on a $A\overline{X} = \mu X$. Dans la suite toutes les matrices considérées sont des matrices carrées complexes.

.3) Exemples

- a) On pose $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Rechercher ses valeurs co-propres et les vecteur co-propres associés.
- b) Démontrer que si une matrice réelle A admet une valeur propre réelle λ , cette matrice a au moins une valeur co-propre.

.4) Correspondance entre valeurs co-propres de A et valeurs propres de $A\overline{A}$

- a) Soit μ dans \mathbf{C} une valeur co-propre de A, montrer que le réel $|\mu|^2$ est valeur propre de $A\overline{A}$.
- b) Soit λ une valeur propre de $A\overline{A}$ avec $\lambda \geq 0$ et X un vecteur propre associé. Démontrer que le réel $\sqrt{\lambda}$ est une valeur co-propre de A en envisageant les deux cas suivants :
 - i. les vecteurs $A.\overline{X}$ et X sont liés;
 - ii. les vecteurs $A.\overline{X}$ et X sont linéairement indépendants.
- c) En déduire que pour que le réel positif ou nul μ soit valeur co-propre de la matrice A, il faut et il suffit que le réel μ^2 soit valeur propre de la matrice $A\overline{A}$.

.5) Cas d'une matrice triangulaire supérieure

Dans cette question on suppose A triangulaire supérieure.

- a) Soit λ une valeur propre de A et θ un réel, montrer que $\lambda e^{i\theta}$ est valeur co-propre de A.
- b) Démontrer que si μ est une valeur co-propre de la matrice A, il existe un réel θ tel que le nombre complexe $\mu e^{i\theta}$ soit valeur propre de la matrice A.
- c) Montrer que 1 est valeur co-propre de $\begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$ et déterminer les vecteurs co-propres associés.

.6) Une caractérisation des valeurs co-propres

Soit B et C dans $\mathcal{M}_n(\mathbf{R})$ telles que A = B + iC. Démonter que le scalaire μ est valeur co-propre de matrice A si et seulement si $|\mu|$ est valeur propre de la matrice D de $\mathcal{M}_{2n}(\mathbf{R})$, définie par blocs par la

relation :
$$D = \begin{pmatrix} B & C \\ C & -B \end{pmatrix}$$
.

PARTIE II

Étant donné deux matrices carrées complexes A et B d'ordre n, s'il existe S dans $GL_n(\mathbf{C})$ telle qu'on ait $B = SA\overline{S}^{-1}$, alors on dit que A et B sont co-semblables. Si A est co-semblable à une matrice diagonale, on dit qu'elle est co-diagonalisable. Le but de cette partie est de rechercher à quelles conditions une matrice est co-diagonalisable.

.1) Une relation d'équivalence

On définit une relation binaire $\approx \operatorname{sur} \mathscr{M}_n(\mathbf{C})$ par $A \approx B \iff \exists S \in GL_n(\mathbf{C}) : B = SA\overline{S}^{-1}$. Démontrer que la relation \approx est une relation d'équivalence dans $\mathscr{M}_n(\mathbf{C})$.

.2) Indépendance des vecteurs co-propres

Soit A dans $\mathcal{M}_n(\mathbf{C})$ et, pour $k \leq n, X_1, X_2, \dots, X_k$, des vecteurs co-propres de A associés à des valeurs co-propres $\mu_1, \mu_2, \dots, \mu_k$. Démontrer que, si ces valeurs co-propres ont des modules différents les uns des autres ($|\mu_p| = |\mu_q| \Longrightarrow p = q$), alors la famille (X_1, X_2, \dots, X_k) est libre.

En déduire que, si la matrice $A.\overline{A}$ a n valeurs propres $\lambda_p, p = 1, 2, \dots, n$, positives ou nulles, $(\lambda_p \ge 0)$ et distinctes les unes des autres $(\lambda_p = \lambda_q \Longrightarrow p = q)$, la matrice A est co-diagonalisable.

.3) Quelques propriétés

- a) Soit S dans $GL_n(\mathbf{C})$ et A la matrice définie par $A = S.\overline{S}^{-1}$. Calculer le produit $A.\overline{A}$.
- b) Soit A dans $\mathscr{M}_n(\mathbf{C})$ telle que $A.\overline{A} = I_n$; démontrer qu'il existe au moins un réel θ tel que la matrice $S(\theta)$, définie par la relation $S(\theta) = e^{i\theta}A + e^{-i\theta}I_n$, soit inversible. Calculer en donnant au réel θ cette valeur, la matrice $A.\overline{S(\theta)}$; en déduire la matrice $S(\theta).\overline{S(\theta)}^{-1}$.

.4) Une condition nécessaire

Soit A une matrice d'ordre n co-diagonalisable et S dans $GL_n(\mathbb{C})$ telle que la matrice $S^{-1}.A.\overline{S}$ soit diagonale. Démonter que la matrice $A.\overline{A}$ est diagonalisable, que ses valeurs propres sont positives ou nulles et que le rang de la matrice A est égal au rang de la matrice $A.\overline{A}$.

.5) Une condition suffisante

Soit A une matrice carrée complexe d'ordre n qui vérifie les trois propriétés suivantes :

- (i) la matrice $A.\overline{A}$ est diagonalisable,
- (ii) les valeurs propres de la matrice $A.\overline{A}$ sont positives ou nulles,
- (iii) le rang de la matrice A est égal au rang de la matrice A.A.

Soit $\lambda_1, \dots, \lambda_k$ les valeurs propres de la matrice $A.\overline{A}$. On les suppose ordonnées de sorte qu'on ait : $\lambda_1 > \lambda_2 > \dots > \lambda_k \geq 0$ et on note n_1, \dots, n_k leurs multiplicités respectives. Soit I_p la matrice identité d'ordre p et Λ la matrice diagonale de diagonale $(\lambda_1, \dots, \lambda_1, \dots, \lambda_k, \dots, \lambda_k)$, où chaque λ_p est répété n_p fois. Soit alors S dans $\operatorname{GL}_n(\mathbf{C})$ telle qu'on ait $A.\overline{A} = S.\Lambda.S^{-1}$. Soit enfin B la matrice définie par la relation $B = S^{-1}.A.\overline{S}$.

- a) Démontrer les relations : $B.\overline{B} = \overline{B}.B$ et $B.\Lambda = \Lambda.B$.
- b) Démontrer que la matrice B s'écrit par blocs sous la forme $B=\begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B_k \end{pmatrix}$. où, dans cette expression, chaque matrice B_p est une matrice d'ordre n_p .
- c) Démontrer qu'il existe une matrice inversible P et une matrice diagonale Δ d'ordre n telles que $B = P\Delta \overline{P}^{-1}$. En déduire que toute matrice vérifiant les hypothèses (i), (ii), (iii) est co-diagonalisable.
- .6) Exemples

Soit
$$A, B, C, D$$
 les matrices d'ordre 2 suivantes : $A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$ $D = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$. Est-ce que ces matrices sont diagonalisables? co-diagonalisables?

Problème complémentaire

Dans ce problème E est un **K**-espace vectoriel, avec $\mathbf{K} = \mathbf{R}$ ou $\mathbf{K} = \mathbf{C}$, de dimension n, avec $n \geq 2$. On rappelle qu'un endomorphisme u dans $\mathscr{L}(E)$ est cyclique s'il existe un vecteur x de E tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E.

.1) Soit u un endomorphisme cyclique. Montrer qu'il existe une unique matrice A de la forme

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & 0 & -a_3 \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

tel que A soit la matrice de u dans un base de E. Réciproquement, montrer que si une telle matrice existe, u est cyclique.

- .2) Soit λ une valeur propre d'un endomorphisme cyclique u, montrer dim $(\text{Ker}(u \lambda Id_E)) = 1$.
- .3) Soit u un endomorphisme nilpotent, i.e. $u^n = 0$.
 - a) Montrer que si $u^{n-1} \neq 0$, alors u est cyclique.
 - b) On suppose $\dim(\operatorname{Ker}(u)) = 1$. Montrer que, pour k dans [1; n], on a $\dim(\operatorname{Ker}(u^k)) = k$ et en déduire que u est cyclique.
- .4) On suppose $\mathbf{K} = \mathbf{C}$ et le polynôme minimal de u, noté π_u , de degré n.

On écrit $\pi_u = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ la décomposition de π_u en facteurs irréductibles dans $\mathbf{C}[X]$.

- a) Montrer, pour $k \in [1, p]$, que Ker $((u \lambda_k)^{m_k})$ est de dimension m_k .
- b) En déduire qu'il existe une base de E dans laquelle u admet pour matrice une matrice diagonale par blocs où les blocs sont des matrices $\lambda_k I_{m_k} + J_{m_k}$, avec J_p la matrice dont tous les termes sont nuls sauf la sous-diagonale qui est formée de 1.
- c) En déduire que u est cyclique.
- .5) On suppose $\mathbf{K} = \mathbf{R}$. Montrer que deux matrices réelles semblables dans $\mathfrak{M}_n(\mathbf{C})$ le sont en fait dans $\mathfrak{M}_n(\mathbf{R})$. En déduire que si le polynôme minimal de u est de degré n, alors u est cyclique.
- .6) Montrer que, si u est cyclique, tout endomorphisme v dans $\mathcal{L}(E)$ tel que $u \circ v = v \circ u$ s'écrit de façon unique sous la forme P(u) avec P dans $\mathbf{K}_{n-1}[X]$.

Première composition de mathématiques — Mines-Ponts 2001 — MP

PARTIE I

.1) a) Soit x un vecteur non nul et μ et μ' deux scalaires distincts. Si $u(x) = \mu x$ et $u(x) = \mu' x$, alors $(\mu - \mu')x = 0$ et donc $\mu - \mu' = 0$ puisque $x \neq 0$.

Il existe au plus un nombre complexe μ tel que la relation $u(x) = \mu x$ ait lieu.

b) Soit x un vecteur co-propre associé à une valeur co-propre μ . Comme $u(x) = \mu x$, alors $u(e^{-i\theta/2}x) = e^{-i\theta/2}u(x) = e^{i\theta/2}u(x) = e^{i\theta/2}u(x) = e^{i\theta/2}x$; ainsi

 $e^{-i\theta/2}x$ est co-propre associé à la valeur co-propre $e^{i\theta}\mu$.

c) Soit x et x' dans E_{μ} et a un scalaire. L'espace E_{μ} contient 0 et est donc non vide. Comme on a $u(x+x')-u(x)-u(x')=\mu x+\mu x'-\mu (x+x')=0$ et $u(ax)-au(x)=\mu(\overline{a}-a)x$,

 E_{μ} n'est un espace vectoriel complexe que si μ est nul. C'est en revanche toujours un espace vectoriel réel.

d) Soit x et x' dans E_{μ} et a et b des scalaires. On a

$$u \circ v(ax + by) = u(\overline{a}v(x) + \overline{b}v(y)) = \overline{\overline{a}}(u \circ v)(x) + \overline{\overline{b}}(u \circ v)(y) = a(u \circ v)(x) + b(u \circ v)(y)$$

et donc l'application composée $u\circ v$ est linéaire.

- .2) a) Soit x dans E avec $x = \sum_{j=1}^{n} x_j e_j$. On a $u(x) = u\left(\sum_{j=1}^{n} x_j e_j\right) = \sum_{j=1}^{n} \overline{x_j} u(e_j)$ et donc en écrivant $u(e_j) = \sum_{i=1}^{n} a_{ij} e_i$, on a, pour $A = (a_{ij})_{1 \le i, j \le n}$, $Y = A\overline{X}$.
 - b) Soit x un vecteur de E, X et X' ses vecteurs colonnes coordonnées dans les bases $(e_i)_{1 \le i \le n}$ et $(f_i)_{1 \le i \le n}$ respectivement. Par définition de la matrice de passage S, on a X = SX'. Soit alors Y et Y' les vecteurs colonnes coordonnées de u(x) dans les bases précédentes. On a $Y = A\overline{X}$ et donc $SY' = A\overline{SX'} = A\overline{SX'}$. Or la matrice S est inversible puisque c'est une matrice de passage et il vient $B = S^{-1}A\overline{S}$.
- .3) a) Matriciellement le problème posé s'écrit $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \overline{a} \\ \overline{b} \end{pmatrix} = \mu \begin{pmatrix} a \\ b \end{pmatrix}$, i.e. $-\overline{b} = \mu a$ et $\overline{a} = \mu b$. La première équation équivaut par conjugaison à $b = -\overline{\mu}a$ et on a donc nécessairement $b = -|\mu|^2 b$, soit b = 0. Il vient alors a = 0 et donc A n'admet pas de valeur co-propre.
 - b) Soit A une matrice réelle, λ une valeur propre réelle de A et X un vecteur propre réel associé à λ , noté X. Comme $AX = \lambda X$ et $\overline{X} = X$, il vient $A\overline{X} = \lambda X$, et donc, puisque X est non nul, X est vecteur co-propre pour A, associé à λ .

Si une matrice A réelle admet une valeur propre réelle, elle a aussi au moins une valeur co-propre.

.4) a) Soit X un vecteur co-propre pour A associé à μ . On a donc $A\overline{X}=\mu X$. Par conjugaison $\overline{A}X=\overline{\mu}\overline{X}$ et donc

$$A(\overline{A}X) = A(\overline{\mu}\overline{X}) = \overline{\mu}A\overline{X} = \overline{\mu}\mu X = |\mu|^2 X$$
.

Comme X est non nul, c'est donc un vecteur propre : $|\mu|^2$ est valeur propre de $A\overline{A}$.

b) On s'intéresse à $\operatorname{Vect} \left(u^k(x) \right)_{k \in \mathbb{N}}$. Quand x est co-propre c'est un espace de dimension au plus 2 puisque x est vecteur propre pour u^2 (qui est linéaire). On cherche des vecteurs co-propres dans ce sous-espace et on distingue deux cas selon sa dimension.

4

On suppose tout d'abord que la famille $(X, A\overline{X})$ est liée. Comme X est non nul, il existe donc un nombre complexe k tel que $A\overline{X} = kX$, i.e. X est co-propre pour la valeur propre k. D'après I.4a, X est alors vecteur propre de $A\overline{A}$ pour la valeur propre $|k|^2$ et il en résulte $|k|^2 = \lambda$, i.e. $|k| = \sqrt{\lambda}$. Comme X est vecteur co-propre pour k, il existe, d'après I.1b, un vecteur co-propre pour |k| et donc $\sqrt{\lambda}$ est valeur co-propre pour A.

On suppose maintenant que la famille $(X, A\overline{X})$ est libre. Il en résulte que le vecteur X' défini par $X' = A\overline{X} + \sqrt{\lambda}X$ est non nul. Il vient alors $\overline{X'} = \overline{AX} + \sqrt{\lambda}\overline{X}$ et $A\overline{X'} = A\overline{AX} + \sqrt{\lambda}A\overline{X} = \lambda X + \sqrt{\lambda}A\overline{X}$. Par conséquent X' est co-propre pour A avec la valeur co-propre $\sqrt{\lambda}$.

Le réel $\sqrt{\lambda}$ est une valeur co-propre de la matrice A.

c) Soit μ dans \mathbf{R}_+ . D'après I.4a, si μ est valeur co-propre de la matrice A, alors $|\mu|^2$, i.e. μ^2 , est valeur propre de la matrice $A\overline{A}$. Réciproquement, d'après I.4b, si μ^2 , est valeur propre de la matrice $A\overline{A}$, alors $\sqrt{\mu^2}$, i.e. μ , est valeur co-propre de la matrice A.

Pour que le réel positif ou nul μ soit valeur co-propre de la matrice A, il faut et il suffit que le réel μ^2 soit valeur propre de la matrice $A\overline{A}$.

.5) a) La matrice AA est un produit de matrices triangulaires supérieures et l'est donc également. Notons A = (a_{ij})_{1≤i,j≤n}. Les termes diagonaux de A sont aussi ses valeurs propres puisque χ_A = ∏ⁿ_{i=1} (a_{ii} − X). Donc il existe i dans [1; n] tel que λ = a_{ii}. Or les éléments diagonaux de AA sont les |a_{ii}|² et donc ce sont aussi ses valeurs propres. Par conséquent |λ|² est valeur propre de AA. D'après I.4b, |λ| est donc valeur co-propre de A. Il résulte alors de I.1b que,

pour tout réel θ , le nombre complexe $\lambda e^{i\theta}$ est une valeur co-propre de la matrice A.

- b) Avec les notations précédentes, les valeurs propres de $A\overline{A}$ sont ses termes diagonaux et donc il existe i dans [1;n] tel que $|\mu|^2 = |a_{ii}|^2$. Autrement dit μ a le même module qu'une des valeurs propres de A, i.e. il existe un réel θ tel que $\mu e^{i\theta}$ soit valeur propre de la matrice A.
- c) D'après ce qui précède, avec $a_{11} = a_{22} = i$ et $\theta = -\pi/2$, 1 est valeur co-propre de A. On a $A\overline{X} = X$ si et seulement si ia + b + c id = a + ib et c + id = ic + d, i.e. c = d et a = b + c. Le réel 1 est valeur co-propre de A et les vecteurs co-propres associés sont les vecteurs de la forme $b \begin{pmatrix} 1 + i \\ 0 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 + i \end{pmatrix}, \text{ avec } (b, c) \in \mathbf{R}^2 \setminus \{(0, 0)\}.$
- .6) Soit μ un complexe. D'après I.1b, μ est valeur co-propre pour A si et seulement si $|\mu|$ l'est, i.e. si et seulement s'il existe X un vecteur non nul tel que, en posant X = Y + iZ avec Y et Z réels,

$$(B+iC)(Y-iZ) = |\mu|(Y+iZ), \text{ i.e. } BY+CZ+i(CY-BZ) = |\mu|Y+i|\mu|Z \text{ ou encore } D \text{ admet } \begin{pmatrix} Y \\ Z \end{pmatrix}$$

comme vecteur propre associé à la valeur propre $|\mu|$:

 μ est valeur co-propre de A si et seulement si $|\mu|$ est valeur propre de D.

PARTIE II

- .1) Soit A, B et C dans $\mathcal{M}_n(\mathbf{C})$ et S et T dans $\mathrm{GL}_n(\mathbf{C})$. On a
 - a) $A = I_n A \overline{I_n}^{-1}$;
 - b) si $B = SA\overline{S}^{-1}$, alors $A = \left(S^{-1}\right)B\overline{\left(S^{-1}\right)}^{-1}$;
 - c) si $B = SA\overline{S}^{-1}$ et $C = TB\overline{T}^{-1}$, alors $C = (TS) A\overline{(TS)}^{-1}$.

Donc la relation binaire \approx est une relation réflexive, symétrique et transitive sur $\mathcal{M}_n(\mathbf{C})$, i.e. c'est une relation d'équivalence.

.2) D'après I.4a (X_1, \dots, X_k) sont des vecteurs propres de la matrice réelle $A\overline{A}$ associés à des valeurs propres $(|\mu_1|^2, \dots, |\mu_k|^2)$ toutes différentes. Ils sont donc linéairement indépendants, i.e.

la famille
$$(X_1, X_2, \cdots, X_k)$$
 est libre.

Si la matrice $A.\overline{A}$ a n valeurs propres réelles positives et distinctes, alors, d'après I.4b, A admet n valeurs co-propres réelles positives et distinctes, et donc aussi de modules distincts. D'après ce qui précède toute famille de vecteurs co-propres associée à ces valeurs co-propres est alors libre et donc, par cardinalité, est une base de E. Il en résulte qu'il existe une base de E formée de vecteurs co-propres pour A et donc A est co-diagonalisable.

- .3) a) Soit B et C dans $\mathcal{M}_n(\mathbf{C})$, on a $\overline{BC} = \overline{B}.\overline{C}$ et donc, si B est inversible, $\overline{B^{-1}} = (\overline{B})^{-1}$. Donc, comme $A = S\overline{S}^{-1}$ on a $A\overline{A} = S\overline{S}^{-1}\overline{S}(\overline{S})^{-1} = SS^{-1}$ et donc $A\overline{A} = I_n$.
 - b) Soit θ un réel et $S(\theta) = e^{i\theta}A + e^{-i\theta}I_n$. On a

$$\det(S(\theta)) = e^{in\theta} \det \left(A + e^{-2i\theta} I_n \right) = e^{in\theta} \chi_A \left(-e^{-2i\theta} \right)$$

où χ_A est le polynôme caractéristique de A. N'étant pas identiquement nul, ce dernier a un nombre fini de racines et donc il existe au moins un réel θ tel que $S(\theta)$ soit inversible.

Alors
$$A.\overline{S(\theta)} = e^{-i\theta}A\overline{A} + e^{i\theta}A = S(\theta)$$
 puisque $A\overline{A} = I_n : A\overline{S(\theta)} = S(\theta)$.

Comme $S(\theta)$ est inversible $\overline{S(\theta)}$ aussi et il vient $A = S(\theta)(\overline{S(\theta)})^{-1}$.

.4) Posons $D=S^{-1}A\overline{S}$. On a $D\overline{D}=S^{-1}A\overline{A}S$. Comme D est diagonale, il en est de même de $D\overline{D}$ et donc $A\overline{A}$ est diagonalisable.

Ses valeurs propres sont celles de $D\overline{D}$, i.e. les éléments de sa diagonale. Ce sont donc les carrés des modules des éléments diagonaux de D et sont donc réels positifs, i.e.

les valeurs propres de $A\overline{A}$ sont positives ou nulles.

Son rang est celui de $D\overline{D}$, i.e. le cardinal du nombre de ses valeurs propres non nulles, ce qui est le même que celui de D et donc c'est aussi le rang de A puisque deux matrices co-semblables sont en particulier équivalentes. Donc $rg(A) = rg(A\overline{A})$.

.5) a) On a $B\overline{B} = S^{-1}A\overline{S}\overline{S}^{-1}\overline{A}S = S^{-1}A\overline{A}S = S^{-1}S\Lambda S^{-1}S = \Lambda$ et donc $B\overline{B}$ est réelle, i.e. $B\overline{B} = \Lambda = \overline{B}B$.

Il vient alors $B\overline{B}B = B\Lambda = \Lambda B$ et donc $B\Lambda = \Lambda B$.

b) On écrit B sous forme de k^2 blocs de tailles $n_i \times n_j$, i.e. $B = (B_{ij})_{1 \le i,j \le k}$ avec B_{ij} dans $\mathcal{M}_{n_i n_j}(\mathbf{C})$. La relation de commutation $B\Lambda - \Lambda B = 0$ s'écrit alors : pour tout (i,j) dans [1;k], $(\lambda_i - \lambda_j)B_{ij} = 0$. Et donc en fait B est diagonale par blocs :

$$B = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B_k \end{pmatrix}. \text{ avec, pour } 1 \le p \le k, B_p \text{ dans } \mathcal{M}_{n_p}(\mathbf{C}).$$

c) Soit p dans [1; k] tel que $\lambda_p \neq 0$, ce qui est automatique si p < k. Posons $C_p = \frac{1}{\sqrt{\lambda_p}} B_p$. On a alors

 $C_p\overline{C_p} = \frac{1}{\lambda_p}B_p\overline{B_p} = I_{n_p}$. D'après II.3b il existe donc une matrice inversible S_p dans $\mathrm{GL}_{n_p}(\mathbf{C})$ telle

que $C_p = S_p \overline{S_p^{-1}}$ et donc $B_p = \sqrt{\lambda_p} S_p \overline{S_p^{-1}}$ ou encore $B_p = S_p \left(\sqrt{\lambda_p} I_{n_p} \right) \overline{S_p^{-1}}$.

Par ailleurs, comme B et A sont co-semblables, elles sont équivalentes et donc ont même rang. Il vient alors $\operatorname{rg}(B) = \operatorname{rg}(A) = \operatorname{rg}(A\overline{A}) = \operatorname{rg}(\Lambda)$. Si $\lambda_k = 0$, alors $\operatorname{rg}(\Lambda) = n - n_k$. Or $\operatorname{rg}(B) = \operatorname{rg}(B_1) + \cdots + \operatorname{rg}(B_k)$ et, d'après ce qui précède, $\operatorname{rg}(B_p) = n_p$ si $\lambda_p \neq 0$, donc si $\lambda_k = 0$, alors $B_k = 0$. Dans ce cas, on pose alors $S_k = I_{n_k}$ et on a encore $B_k = S_k \left(\sqrt{\lambda_k} I_{n_k} \right) \overline{S_k^{-1}}$.

On pose enfin P la matrice diagonale par blocs données par $(S_p)_{1 \leq p \leq k}$ et Δ la matrice diagonale de diagonale $(\lambda_1, \dots, \lambda_1, \dots, \lambda_k, \dots, \lambda_k)$, où chaque λ_p est répété n_p fois. Comme chaque S_p est inversible, il en va de même pour P. De plus, d'après ce qui précède, $B = P\Delta \overline{P}^{-1}$ et donc B est co-diagonalisable :

il existe P dans $GL_n(\mathbf{C})$ et Δ diagonale d'ordre n telles que $B = P\Delta \overline{P}^{-1}$.

Comme A est co-semblable à B, il en résulte que

toute matrice vérifiant les hypothèses (i), (ii), (iii) est co-diagonalisable.

.6) Comme A est triangulaire supérieure et admet uniquement i comme valeur propre, son polynôme minimal est $(X - i)^2$ et il n'est pas simplement scindé, donc A n'est pas diagonalisable. Néanmoins

d'après I.5c, $\left(\begin{pmatrix}1+i\\0\end{pmatrix},\begin{pmatrix}1\\1+i\end{pmatrix}\right)$ est une base de co-diagonalisation de A et donc

A est co-diagonalisable.

Comme le polynôme caractéristique de B est $X^2 - 2X + 2$, il est simplement scindé sur \mathbb{C} et donc B est diagonalisable. Ses valeurs propres sont 1+i et 1-i. Néanmoins, on a $B\overline{B}=B^2$ et donc les valeurs propres de $B\overline{B}$ sont $(1+i)^2$ et $(1-i)^2$, i.e. 2i et -2i. Comme ce ne sont pas des réels positifs ou nuls, B n'est pas co-diagonalisable.

Comme pour A, C admet X^2 comme polynôme minimal et donc C n'est pas diagonalisable. Par ailleurs $C\overline{C} = C^2 = 0$. Par conséquent C et $C\overline{C}$ n'ont pas même rang et donc

C n'est pas co-diagonalisable.

Le polynôme caractéristique de D est X^2-2X+2 et donc \overline{D} est diagonalisable. \overline{D} (En fait B et D sont semblables, puisque semblables à une même matrice diagonale.) Par ailleurs $D\overline{D}=2I_2$ et donc $D\overline{D}$ est diagonalisable et ses valeurs propres sont des réels positifs. Enfin, D et $D\overline{D}$ sont inversibles, donc de rang 2 et par conséquent ont même rang. D'après le critère II.5c, \overline{D} est co-diagonalisable.

Problème complémentaire

.1) Soit x tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E. La matrice de u dans cette base a la forme requise. Par ailleurs si A est la matrice donnée dans la question, alors son polynôme caractéristique, calculé en développant $\det(A - XI_n)$ par rapport à la dernière colonne, est $(-1)^n(X^n + a_{n-1}X^{n-1} + \dots + a_0)$ et donc si A représente u dans une certaine base, les coefficients de sa dernière colonne correspondent à ceux du polynôme caractéristique de u et sont donc uniquement déterminés :

il existe une unique matrice
$$A$$
 de la forme $A=\begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & 0 & -a_3 \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$ tel que A soit la matrice de u dans un base de E .

Réciproquement si A représente u dans une base de E, alors le premier vecteur de cette base est tel que $(x, u(x), \dots, u^{n-1}(x))$ est justement la base de E en question, et donc

si une telle matrice existe, u est cyclique.

- .2) Soit une base telle que u admette la matrice A précédente comme représentation. Puisque la matrice extraite de $A-\lambda I_n$ en supprimant la première ligne et la dernière colonne est triangulaire supérieure de diagonale 1, elle est donc inversible, d'où $\operatorname{rg}(A-\lambda I_n) \geq n-1$ et on a même égalité car λ est valeur propre. Par le théorème du rang, la dimension de $\operatorname{Ker}(u-\lambda\operatorname{Id}_E)$ est 1.
- .3) a) Si $u^{n-1} \neq 0$, soit x n'appartenant par à $\operatorname{Ker}(u^{n-1})$. Soit alors $\sum_{k=0}^{n-1} \lambda_k u^k(x) = 0$ une relation de dépendance linéaire de la famille $(u^k(x))_{0 \leq k \leq n-1}$ et soit p minimal dans [0; n-1] tel que $\lambda_k \neq 0$. En appliquant u^{n-1-p} à cette relation, ce qui est licite puisque $p \leq n-1$, il vient $\lambda_p u^{n-1}(x) = 0$ puisque $u^n = u^{n+1} = \cdots = 0$ et $\lambda_{p-1} = \lambda_{p-2} = \cdots = 0$. Mais ceci est une contradiction et donc la famille $(u^k(x))_{0 \leq k \leq n-1}$ est libre. Par cardinalité, c'est une base de E et donc $si u^{n-1} \neq 0$, alors u est cyclique.
 - b) Pour k dans [1; n], on considère la restriction de u à Ker (u^k) . Son image est incluse dans Ker (u^{k-1}) et son noyau est Ker $(u) \cap$ Ker (u^k) . Son noyau est donc de dimension au plus 1 et donc, d'après le théorème du rang, son image est de dimension supérieure à dim $(\text{Ker }(u^k)) 1$ et on en déduit dim $(\text{Ker }(u^{k-1})) \geq \dim (\text{Ker }(u^k)) 1$ ou encore dim $(\text{Ker }(u^k)) \leq \dim (\text{Ker }(u^{k-1})) + 1$. Puisque $\dim (\text{Ker }(u)) = 1$ il vient, par récurrence immédiate, $\dim (\text{Ker }(u^k)) \leq k$ avec inégalité stricte à partir du premier rang pour lequel l'inégalité est stricte. On en déduit d'une part $u^{n-1} \neq 0$ et d'autre part, puisque $u^n = 0$ et donc dim $(\text{Ker }(u^n)) = n$, qu'aucune inégalité n'est stricte, i.e.

pour tout
$$k$$
 dans $[1; n]$, dim $(Ker(u^k)) = k$.

Comme $u^{n-1} \neq 0$, il résulte de la question précédente que u est cyclique.

.4) a) Puisque π_u est un polynôme annulateur de u, on a $E = \ker(\pi_u(u))$ et donc, d'après le théorème de décomposition des noyaux, $E = \bigoplus_{k=1}^p \operatorname{Ker}(u-\lambda_k)^{m_k}$. Par définition du polynôme minimal $\operatorname{Ker}(u-\lambda_k)^{m_k-1} \subseteq \operatorname{Ker}(u-\lambda_k)^{m_k}$ car sinon, toujours grâce au théorème de décomposition des noyaux, $(X-\lambda_k)^{m_k-1} \prod_{j\neq k} (X-\lambda_j)^{m_j}$ annulerait u. Notons u_k la restriction de $u-\lambda_k$ à $\operatorname{Ker}(u-\lambda_k)^{m_k}$. Par construction u_k est nilpotente et son noyau est de dimension inférieure à 1, d'après 2. Il résulte de 3b que la dimension de $\operatorname{Ker}(u-\lambda_k)^{m_k}$ est m_k .

- b) Toujours grâce à 3b, et avec les notations précédentes, u_k est cyclique de polynôme minimal X^{m_k} . D'après 1, il existe donc une base de $\operatorname{Ker}(u-\lambda_k)^{m_k}$ dans laquelle la matrice de u_k est J_{m_k} . En concaténant ces bases, on en déduit que
 - il existe une base de E dans laquelle u admet pour matrice la matrice diagonale par blocs où les blocs sont des matrices $\lambda_k I_{m_k} + J_{m_k}$.
- c) On écrit $\pi_u = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ et on considère l'endomorphisme v de \mathbb{C}^n dont la matrice dans la base canonique est la matrice A considérée dans 1. C'est donc un endomorphisme cyclique, d'après 1. Soit x le premier vecteur de base et P un polynôme annulateur de v de degré strictement inférieur à n. Il vient P(v)(x) = 0 mais ceci est une combinaison linéaire de $(x, v(x), \cdots, v^{n-1}(x))$ et donc tous les coefficients de P sont nuls : π_v est donc de degré n. On peut alors appliquer ce qui précède et donc A est semblable à la matrice diagonale par blocs où les blocs sont des matrices $\lambda_k I_{m_k} + J_{m_k}$. Il en résulte donc que la matrice de π_u dans la base exhibée à la question précédente est semblable à la matrice A et A est ainsi la matrice de u dans une certaine base de E. On conclut, grâce à 1, que u est cyclique.
- .5) Soit B et C dans $\mathfrak{M}_n(\mathbf{R})$ et M dans $\mathrm{GL}_n(\mathbf{C})$ telle que $B=M^{-1}AM$. On a donc MB=AM. On écrit M=U+iV avec U et V dans $\mathfrak{M}_n(\mathbf{R})$. Le polynôme en λ donné par $\det(U+\lambda v)$ est alors un polynôme à coefficients réels, donc complexes, qui ne s'annule pas en i. Il n'est donc pas identiquement nul et on peut trouver λ réel tel que $U+\lambda V$ soit inversible. Or MB=AM s'écrit, en séparant parties réelle et imaginaire, UB=AU et VB=AV et on en déduit $(U+\lambda V)B=A(U+\lambda V)$. Comme $U+\lambda V\in \mathrm{GL}_n(\mathbf{R})$, il vient $B=(U+\lambda V)^{-1}A(U+\lambda V)$:

deux matrices réelles semblables dans $\mathfrak{M}_n(\mathbf{C})$ le sont en fait dans $\mathfrak{M}_n(\mathbf{R})$.

- Soit v l'endomorphisme de \mathbb{C}^n canoniquement associé à la matrice de u dans une certaine base de E et P dans $\mathbb{C}[X]$ annulant v. On écrit P=Q+iR avec Q et R dans $\mathbb{R}[X]$. On peut considérer v comme une matrice à coefficients complexes, dont les coefficients sont en fait réels. Alors P(v)=Q(v)+iR(v)=0 et donc, en séparant parties réelle et imaginaire, Q(v)=R(v)=0 et donc soit Q=R=0, soit $\deg(Q)\geq n$ ou $\deg(R)\geq n$, i.e. soit P=0, soit $\deg(P)\geq n$. Il en résulte que le polynôme minimal de v est de degré n et même que c'est π_u . En particulier v est cyclique et semblable à la matrice A de la question 1 avec comme coefficients ceux donnés par π_u . Or cette matrice ainsi que v sont réelles. Elles sont donc semblables dans $\mathfrak{M}_n(\mathbf{R})$. Autrement dit la matrice de u dans une certaine base de E est A et donc u est cyclique.
- .6) Puisque π_u est de degré n, $\mathbf{K}[u]$ est isomorphe à $\mathbf{K}_{n-1}[X]$ par $P\mapsto P(u)$ et tout élément de $\mathbf{K}[u]$ commute à u puisque $\mathbf{K}[X]$ est commutatif. Réciproquement si v commute à u et si x est un vecteur de E tel que $(x, u(x), \cdots, u^{n-1}(x))$ est une base de E, soit $v(x) = \sum_{k=0}^{n-1} a_k u^k(x)$ la décomposition de v(x) selon cette base. On pose $P = \sum_{k=0}^{n-1} a_k X^k$. Par commutation de v et v, on a alors, pour tout v dans v0; v1, v2, v3, v3, v4, v4, v5, v5, v6, v7, v8, v8, v9, v

tout endomorphisme v dans $\mathcal{L}(E)$ tel que $u \circ v = v \circ u$ s'écrit de façon unique sous la forme P(u) avec P dans $\mathbf{K}_{n-1}[X]$.