CONCOURS D'ADMISSION 2005

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Endomorphismes d'espaces fonctionnels

Ce problème a pour but l'étude de certains endomorphismes des espaces de fonctions différentiables et des espaces duaux.

Pour tout entier $n \ge 0$ on désigne par E_n l'espace vectoriel des fonctions à valeurs complexes, de classe C^n , définies sur l'intervalle [-1,1]; pour toute f de E_0 on pose

$$||f|| = \sup \{|f(x)|, x \in [-1, 1]\}.$$

Enfin, on munit E_n de la norme π_n définie par

$$\pi_n(f) = \max \{ ||f^{(k)}||, k = 0, 1, \dots, n \}.$$

(On ne demande pas de vérifier que π_n est effectivement une norme).

Première partie

1. Calculer $\pi_n(X^p)$ où $p \in \mathbb{N}$ et où X désigne la fonction $x \mapsto x$.

Pour tout f de E_n , $n \ge 0$ et tout g de E_n , $n \ge 1$, on pose

$$(A_n f)(x) = x f(x)$$
 , $(B_n g)(x) = \int_0^1 g'(xt)dt$ pour tout $x \in [-1, 1]$.

- **2.a)** Vérifier que $A_n f$ appartient à E_n , et que $B_n g$ appartient à E_{n-1} .
- b) Montrer que A_n est une application linéaire continue de E_n dans lui-même, de norme égale à n+1, et que B_n est une application linéaire continue de E_n dans E_{n-1} , de norme égale à 1.
 - **3.** Calculer les produits B_nA_n et $A_{n-1}B_n$, applications de E_n dans E_{n-1} .

- **4.** On se propose maintenant de démontrer que le sous-espace image de A_n est le sous-ensemble F_n de E_n formé des fonctions g telles que g(0) = 0 et que, en outre, $\frac{1}{x} \left(g^{(n)}(x) g^{(n)}(0)\right)$ admette une limite finie lorsque x tend vers 0.
 - a) Traiter le cas où n=0.
 - b) Supposant maintenant n > 0, vérifier que Im A_n est inclus dans F_n .
- c) Prenant g dans F_n et posant $f = B_n g$, montrer que f est de classe C^n sur [-1,1] privé de 0, puis étudier le comportement de $\frac{1}{x} \left(f^{(n-1)}(x) f^{(n-1)}(0) \right)$ lorsque x tend vers 0.
 - d) Conclure.

Deuxième partie

On désigne par E l'espace vectoriel des fonctions à valeurs complexes, de classe C^{∞} , définies sur [-1,1]. Pour toute $f \in E$ on pose

$$\delta(f) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \frac{\pi_n(f)}{1 + \pi_n(f)} .$$

- 5. Démontrer les assertions suivantes :
 - a) Pour $f_1, f_2, f_3 \in E$, on a

$$\delta(f_1 - f_2) \leq \delta(f_1 - f_3) + \delta(f_2 - f_3)$$
.

- b) Étant donnés des éléments f et $f_i (i \in \mathbb{N})$ de E, les conditions suivantes sont équivalentes :
 - (i) $\delta(f_i f)$ tend vers 0 lorsque i tend vers $+\infty$
 - (ii) pour tout $n \ge 0$, $f_i^{(n)}$ converge uniformément vers $f^{(n)}$.
- c) La fonction δ définie ci-dessus est-elle la seule pour laquelle les assertions 5.a) et 5.b) sont vraies?

On désigne respectivement par A et B les endomorphismes de E définis par

$$(Af)(x) = x f(x)$$
 , $(Bg)(x) = \int_0^1 g'(xt)dt$ pour tout $x \in [-1,1]$.

- **6.a)** Déterminer les produits AB et BA.
 - b) Déterminer les noyaux et les images de A et B.

7.a) Déterminer des fonctions φ_n , $n=1,2,\ldots$ sur [0,1] telles que l'on ait, pour toute $g\in E$,

$$(B^n g)(x) = \int_0^1 \varphi_n(t) g^{(n)}(xt) dt$$
.

[On pourra procéder par récurrence sur n.]

- **b)** Calculer $(B^n g)(0)$.
- c) On fixe g dans E. Déterminer des polynômes P_n , n = 0, 1, ... tels que l'on ait

$$\forall x \in [0,1] \quad \forall n \geqslant 1 \quad , \quad (A^n B^n g)(x) = g(x) - P_{n-1}(x) .$$

[On pourra procéder par récurrence sur n et écrire $A^{n+1}B^{n+1}=A^nABB^n$.]

- d) Déduire de ce qui précède une démonstration de la formule de Taylor avec reste intégral.
- 8. Déterminer l'image de A^n et le noyau de B^n .

Troisième partie

On désigne par E' l'espace vectoriel des formes linéaires φ sur E possédant la propriété suivante : si des éléments f et $f_i(i \in \mathbf{N})$ de E sont tels que $\delta(f_i - f)$ tend vers 0 lorsque i tend vers $+\infty$, alors $\varphi(f_i)$ tend vers $\varphi(f)$.

9. Vérifier que, si φ appartient à E', il en est de même des formes linéaires $\varphi \circ A$ et $\varphi \circ B$.

On note A' et B' respectivement les endomorphismes de E' ainsi définis. Pour tout $i \in \mathbb{N}$ et tout $\alpha \in [-1,1]$, on note $\varphi_{\alpha;i}$ la forme linéaire sur $E: f \mapsto f^{(i)}(\alpha)$.

- **10.** Pour n entier positif, déterminer Im $(A')^n$ et Ker $(B')^n$; montrer que les $\varphi_{0;i}$, $i = 0, \ldots, n-1$, forment une base de Ker $(A')^n$.
 - 11. Déterminer les éléments ψ de E' solutions de l'équation $(A')^n \psi = \varphi_{0:0}$.

Étant donné un nombre complexe α , on désigne par T_{α} l'endomorphisme de E défini par

$$(T_{\alpha}f)(x) = (x - \alpha) f(x)$$
 pour tout $x \in [-1, 1]$.

On pourra admettre les résultats suivants :

- (i) si φ appartient à E', il en est de même de $\varphi \circ T_{\alpha}$. On notera T'_{α} l'endomorphisme de E' ainsi défini.
- (ii) si $\alpha \in [-1,1]$, $(T'_{\alpha})^n$ est surjectif et Ker $(T'_{\alpha})^n$ admet pour base les $\varphi_{\alpha;i}$, $i=0,\ldots,n-1$.

12. Dans cette question on désigne par G un espace vectoriel et par U_1, \ldots, U_r des endomorphismes de G, commutant deux à deux et tels que, pour $i \neq j$, on ait

$$\operatorname{Ker} U_i = U_j(\operatorname{Ker} U_i)$$
.

Montrer que l'on a

$$\operatorname{Ker} (U_1 \dots U_r) = \operatorname{Ker} U_1 + \dots + \operatorname{Ker} U_r$$
.

- 13. Soit Q un polynôme à une indéterminée, à coefficients complexes; notons T_Q l'endomorphisme de E défini par $(T_Q f)(x) = Q(x) f(x)$.
- a) Vérifier que, si φ appartient à E', il en est de même de $\varphi \circ T_Q$. On note T'_Q l'endomorphisme de E' ainsi défini.
 - b) Préciser l'image de T_Q' et donner une base de son noyau.

* *

PARTIE I

- 1. Pour p et k dans \mathbf{N} , X^p est polynomiale donc de classe C^{∞} sur [-1,1] et, si $k \leq p$, $(X^p)^{(k)} = \prod_{0 \leq i < k} (p-i)X^{p-k}$ et sinon $(X^p)^{(k)} = 0$. On a donc $\|(X^p)^{(k)}\| = k!\binom{p}{k}$ et $\pi_n(X^p) = p!$ si $p \leq n$ et $\pi_n(X^p) = n!\binom{p}{n}$ sinon.
- 2. a) Soit n dans \mathbf{N} . Comme X est de classe C^{∞} , en particulier $X \in E_n$ et comme E_n est une algèbre $A_n f \in E_n$.

 On suppose de plus $n \geq 1$. Pour g dans E_n , $B_n g$ est la fontion pente de g par rapport à 0, prolongée par continuité en 0. Soit φ la fonction donnée par $\varphi(x,t) = g'(xt)$. Puisque la fonction produit est de classe C^{∞} , que, pour t dans [0,1] et x dans [-1,1], on a $xt \in [-1,1]$ et que g' est de classe C^{n-1} , φ est de classe C^{n-1} par rapport à x et, pour p entier avec $0 \leq p \leq n-1$, on a $\frac{\partial^p f}{\partial x^p}(x,t) = t^p g^{p+1}(xt)$ et donc $\frac{\partial^p f}{\partial x^p}(x,t) \leq \pi_{n-1}(g')$. Comme les fonctions constantes (positives) sont continues et intégrables sur [0,1] il résulte de la règle de Leibniz, ou théorème de dérivation sous le signe somme, que $B_n g$ est de classe C^{n-1} , i.e. $B_n g \in E_{n-1}$.
 - b) D'après ce qui précède A_n est Puisque E_n est une algèbre, A_n est une application linéaire de E_n dans

1