Composition de mathématiques B X 2014 – MP

Notations

Soit d un entier strictement positif. On note $\mathcal{M}_d(\mathbf{R})$ l'espace vectoriel des matrices carrées réelles de taille d et I_d désigne la matrice identité. Le produit de deux matrices A et B de $\mathcal{M}_d(\mathbf{R})$ est noté $A \times B$ ou simplement AB. On appelle commutateur de A et B la matrice donnée par

$$[A, B] = AB - BA.$$

On rappelle que l'exponentielle d'une matrice carrée $A \in \mathcal{M}_d(\mathbf{R})$ est définie par

$$\exp(A) = I_d + \sum_{n=1}^{+\infty} \frac{A^n}{n!} .$$

On munit $\mathcal{M}_d(\mathbf{R})$ d'une norme d'algèbre $\|\cdot\|$, c'est-à-dire que pour toutes matrices A, B de $\mathcal{M}_d(\mathbf{R})$,

$$||AB|| \le ||A|| \, ||B||$$
.

On note $GL_d(\mathbf{R})$ le groupe linéaire des matrices de $\mathcal{M}_d(\mathbf{R})$ qui sont inversibles, et $SL_d(\mathbf{R})$ le sous-groupe de $GL_d(\mathbf{R})$ formé des matrices de déterminant 1.

Les parties I et IV sont consacrées à l'étude de matrices carrées avec d=3. À l'exception de la question 7b, chacune des parties II et III est indépendante des autres parties.

PARTIE I

On considère l'ensemble des matrices carrées de taille 3 triangulaires supérieures strictes :

$$\mathbf{L} = \left\{ M_{p,q,r} \; \middle| \; (p,q,r) \in \mathbf{R}^3 \right\} \quad \text{où} \quad M_{p,q,r} = \begin{pmatrix} 0 & p & r \\ 0 & 0 & q \\ 0 & 0 & 0 \end{pmatrix} \; .$$

On définit $\mathbf{H} = \{I_3 + M \mid M \in \mathbf{L}\}.$

- 1. Montrer que le produit de trois matrices quelconques dans L est nul et calculer l'exponentielle de la matrice $M_{p,q,r}$.
- **2a.** Montrer que l'on définit une loi de groupe \star sur ${\bf L}$ en posant pour $(M,N)\in {\bf L}^2$:

$$M \star N = M + N + \frac{1}{2}[M, N] .$$

On explicitera l'inverse de $M_{p,q,r}$.

- **2b.** Déterminer les matrices $M_{p,q,r}$ dans **L** qui commutent avec tous les éléments de **L** pour la loi \star . Le groupe (L,\star) est-il commutatif?
 - **3.** Montrer que pour $(M, N) \in \mathbf{L}^2$, on a :

$$(\exp(M)) \times (\exp(N)) = \exp(M \star N) .$$

4. Soit M et N deux éléments de \mathbf{L} . Montrer

$$\exp([M, N]) = \exp(M) \exp(N) \exp(-M) \exp(-N).$$

5. Montrer que \mathbf{H} muni du produit usuel des matrices est un sous-groupe de $SL_3(\mathbf{R})$ et que

$$\exp : (\mathbf{L}, \star) \longrightarrow (\mathbf{H}, \times)$$

est un isomorphisme de groupes.

PARTIE II

On considère dans cette partie deux matrices A et B de $\mathcal{M}_d(\mathbf{R})$ telles que A et B commutent avec [A, B].

- **6a.** Montrer $[\exp(A), B] = [A, B] \exp(A)$.
- **6b.** Déterminer une équation différentielle vérifiée par $t \mapsto \exp(tA) \exp(tB)$.
- 6c. En déduire la formule :

$$\exp(A)\exp(B) = \exp\left(A + B + \frac{1}{2}[A, B]\right) .$$

- 7. On note $\mathcal{L} = \operatorname{Vect}(A, B, [A, B])$.
- **7a.** Si $(M, N) \in \mathcal{L}^2$, montrer que [M, N] commute avec M et N.
- **7b.** Soit $G = \{\exp(M) \mid M \in \mathcal{L}\}$. Montrer que (G, \times) est un groupe et que l'application

$$\Phi : \mathbf{H} \longrightarrow G, \quad \exp(M_{p,q,r}) \longmapsto \exp(pA + qB + r[A,B]),$$

est un morphisme de groupes.

PARTIE III

Dans cette partie A et B sont deux matrices quelconques de $\mathcal{M}_d(\mathbf{R})$.

- 8. Soit $(D_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{M}_d(\mathbf{R})$ qui converge vers D dans $\mathcal{M}_d(\mathbf{R})$. Elle est donc bornée : soit $\lambda > 0$ tel que pour tout entier n dans \mathbb{N} , on ait $||D_n|| \leq \lambda$.
- **8a.** Soit $k \in \mathbb{N}$. Justifier $\frac{n!}{(n-k)! n^k} \to 1$ quand $n \to +\infty$ et, si $n \ge k$ (et $n \ge 1$),

$$0 \le 1 - \frac{n!}{(n-k)! \, n^k} \le 1 \; .$$

En déduire

$$\left(I_d + \frac{D_n}{n}\right)^n - \sum_{k=0}^n \frac{1}{k!} (D_n)^k \to 0 \quad \text{quand} \quad n \to +\infty.$$

8b. Montrer pour tous entiers k et n, avec $k \ge 1$ et $n \ge 0$,

$$||(D_n)^k - D^k|| \le k\lambda^{k-1} ||D_n - D||$$
.

- **8c.** Conclure $\left(I_d + \frac{D_n}{n}\right)^n \to \exp(D)$ quand $n \to +\infty$.
- 9a. Soit D dans $\mathcal{M}_d(\mathbf{R})$ tel que $||D|| \le 1$. Montrer qu'il existe une constante μ , avec $\mu > 0$, indépendante de D telle que

$$\|\exp(D) - I_d - D\| \le \mu \|D\|^2$$
.

9b. Montrer qu'il existe une constante ν , avec $\nu > 0$, et pour tout entier n, avec $n \ge 1$, une matrice C_n dans $\mathcal{M}_d(\mathbf{R})$, telles que

$$\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right) = I_d + \frac{A}{n} + \frac{B}{n} + C_n \quad \text{et} \quad \|C_n\| \le \frac{\nu}{n^2}.$$

10. Déduire de ce qui précède

$$\exp(A+B) = \lim_{n \to +\infty} \left(\exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right) \right)^n.$$

PARTIE IV

Soit T un réel strictement positif. On note E(T) l'ensemble constitué des couples (u, v) de fonctions continues sur [0; T] à valeurs réelles. Un chemin de CARNOT contrôlé par (u, v) dans E(T) est une application de classe C^1 , $\gamma : [0; T] \to \mathcal{M}_3(\mathbf{R})$, solution de l'équation différentielle matricielle :

$$\begin{cases} \gamma'(t) = u(t)\gamma(t)M_{1,0,0} + v(t)\gamma(t)M_{0,1,0}, \\ \gamma(0) = I_3, \end{cases}$$

où les matrices $M_{1,0,0}$ et $M_{0,1,0}$ ont été introduites dans la première partie.

11a. Pour tout (u, v) dans E(T), justifier l'existence d'un unique chemin de CARNOT controlé par (u, v).

11b. Montrer que γ vérifie

$$\forall t \in [0;T], \quad \gamma(t) \in \mathbf{H},$$

et calculer explicitement, en fonction de t, u et v les fonctions p, q et r telles que

$$\forall t \in [0;T] , \quad \gamma(t) = \exp(M_{p(t),q(t),r(t)}) .$$

12. Pour (θ, φ) dans \mathbb{R}^2 , on définit des contrôles par

$$\forall t \in [0; T] \quad u_{\theta, \varphi}(t) = \sin(\theta - \varphi t) \quad \text{et} \quad v_{\theta, \varphi}(t) = \cos(\theta - \varphi t),$$

et on note $\gamma_{\theta,\varphi}(t) = \exp(M_{p(t),q(t),r(t)})$, où $\gamma_{\theta,\varphi}$ est le chemin de CARNOT controlé par $(u_{\theta,\varphi},v_{\theta,\varphi})$.

12a. On suppose $\varphi \neq 0$. Pour t dans [0;T], calculer p(t) et q(t) et vérifier

$$r(t) = \frac{t\varphi - \sin(t\varphi)}{2\varphi^2} \ .$$

12b. Étudier de même le cas $\varphi = 0$.

La sphère de CARNOT est l'ensemble défini par :

$$B(1) = \{ (p, q, r) \in \mathbf{R}^3 \mid \exists (\theta, \varphi) \in [-\pi; \pi] \times [-2\pi; 2\pi], \ \gamma_{\theta, \varphi}(1) = \exp(M_{p, q, r}) \} \ .$$

13. On définit les fonctions f et g sur $[0; 2\pi]$ par :

$$f(s) = \frac{2(1 - \cos(s))}{s^2}$$
 et $g(s) = \frac{s - \sin(s)}{2s^2}$.

Montrer que f et g se prolongent par continuité sur $[0; 2\pi]$, que f est alors une bijection continue de $[0; 2\pi]$ sur un ensemble qu'on précisera, et que g atteint son maximum en π .

- **14.** Montrer, si $(p,q,r) \in B(1)$ avec $r \ge 0$, qu'alors $r = g \circ f^{-1}(p^2 + q^2)$. Énoncer et établir une réciproque. On pourra donner l'allure de la fonction $s \longmapsto g \circ f^{-1}(s^2)$ pour $s \in [0;1]$ et notamment les tangentes en s = 0 et s = 1.
- **15.** Montrer l'existence d'une constante c_1 , avec $c_1 > 0$, telle que pour tout $(p, q, r) \in B(1)$, on ait

$$c_1^{-1} \le p^2 + q^2 + |r| \le c_1 .$$

16a. Montrer que pour tout (p,q,r) dans $\mathbb{R}^3 \setminus \{(0,0,0)\}$, il existe un unique λ strictement positif tel que :

$$(\lambda p, \lambda q, \lambda^2 r) \in B(1)$$
.

- **16b.** En déduire que pour tout A dans $\mathbf{H} \setminus \{I_3\}$, il existe un réel strictement positif T(A) et des paramètres (θ, φ) (dépendants également de A) tels que A soit l'extrémité du chemin de CARNOT contrôlé par $(u_{\theta,\varphi}, v_{\theta,\varphi})$ dans E(T(A)).
- **16c.** Montrer l'existence d'une constante c_2 strictement positive telle que pour p, q, r réels non tous nuls, on ait

$$c_2^{-1} \sqrt{p^2 + q^2 + |r|} \leq T(\exp(M_{p,q,r})) \leq c_2 \sqrt{p^2 + q^2 + |r|} \; .$$

Composition de mathématiques B - X 2014 - MP

PARTIE A

- 1. On note (e_1, e_2, e_3) la base canonique de \mathbf{R}^3 , et, pour $0 \le i \le 3$, $E_i = \operatorname{Vect}(e_j)_{j \le i}$. Alors on a $M \in \mathbf{L} \iff \forall i \in [1;3]$ $M(E_i) \subset E_{i-1}$. En particulier pour M, N, P dans \mathbf{L} , on a $\operatorname{Im}(P) \subset E_2$, $\operatorname{Im}(NP) \subset N(E_2) \subset E_1$ et $\operatorname{Im}(MNP) \subset M(E_1) = \{0\}$, i.e. [le produit de trois matrices dans \mathbf{L} est nul.] On en déduit $M^3 = 0$ puis $\exp(M) = I_3 + M + \frac{1}{2}M^2$. Comme on a $M_{p,q,r}^2 = M_{0,0,pq}$, il vient $\exp(M_{p,q,r}) = I_3 + M_{p,q,\frac{1}{2}pq+r}$.
- 2a. Soit M et N dans \mathbf{L} . Puisque les $E_i = \operatorname{Vect}(e_j)_{j \leq i}$ introduits à la question précédente sont des espaces vectoriels, $(\mathbf{L}, +)$ est un sous-groupe de $(\mathcal{M}_3(\mathbf{R}), +)$ et il est stable par multiplication car, pour $1 \leq i \leq 3$, $MN(E_i) \subset M(E_i) \subset E_{i-1}$. En particulier \star est une loi interne sur \mathbf{L} , $0 \in \mathbf{L}$ et \mathbf{L} est stable par passage à l'opposé. Puisque M commute à 0 et -M, on a $M \star 0 = 0 \star M = M$ et $M \star (-M) = (-M) \star M = 0$. Ainsi 0 est élément neutre pour \star dans \mathbf{L} et tout élément y possède un symétrique pour \star . Enfin puisque le produit de trois matrices dans \mathbf{L} est nul, le produit (à gauche ou à droite) de [M, N] avec tout matrice de \mathbf{L} est nul et en particulier ce produit est commutatif. Il en résulte

$$(M \star N) \star P = \left(M + N + \frac{1}{2}[M, N]\right) + P + \frac{1}{2}\left([M, P] + [N, P]\right) = M + \left(N + P + \frac{1}{2}[N, P]\right) + \frac{1}{2}\left([M, N] + [M, P]\right) = M \star (N \star P)$$

et donc la loi \star est associative : (\mathbf{L}, \star) est un groupe et l'inverse de $M_{p,q,r}$ est $M_{-p,-q,-r}$.

Remarque : on peut aussi remarquer que $(p,q,r) \mapsto M_{p,q,r}$ est une bijection de \mathbf{R}^3 sur \mathbf{L} et que la loi \star est donnée par $(p,q,r)\star(p',q',r')=(p+p',q+q',r+r'+\frac{pq'-p'q}{2})$, ce que l'on peut écrire dans $\mathbf{R}^2\times\mathbf{R}$ comme $(u,r)\star(u',r')=(u+u',r+r'+\frac{1}{2}\det(u,u'))$. Sous cette forme on voit qu'on a affaire à une loi interne d'élément neutre (0,0), de symétrique donné par (u',r')=(-u,-r) car le déterminant est alterné, et l'associativité résulte de $\frac{1}{2}\det(u,u')+\frac{1}{2}\det(u+u',u'')=\frac{1}{2}\det(u,u'+u'')+\frac{1}{2}\det(u',u'')$. On peut aussi mener tous ces calculs $in\ extenso$!

On peut aussi utiliser la question précédente pour montrer que exp est une bijection ensembliste entre \mathbf{L} et \mathbf{H} , puis répondre à la question 3 directement et en déduire $M \star N = \exp^{-1}(\exp(M) \times \exp(N))$. Cette remarque donne l'associativité et on peut répondre à la question 5 pour en déduire qu'en fait (\mathbf{L}, \star) est le groupe obtenu à partir de $(\mathbf{H}, +)$ par transport de structure.

2b. Par définition pour M et N dans \mathbf{L} , on a $M \star N = N \star M$ si et seulement si [M,N] = [N,M], i.e. [M,N] = 0 ou encore si et seulement si M et N commutent. Or, d'après le calcul effectué en remarque dans la question précédente, $M_{p,q,r}$ et $M_{p',q',r'}$ commutent si et seulement si (p,q) et (p',q') sont liés. Si $M_{p,q,r}$ commute à toute matrice de \mathbf{L} , en prenant (p',q',r') = (-q,p,0), il vient p=q=0 et la réciproque étant immédiate,

3. Soit M et N dans \mathbf{L} , d'après la question 1, le produit de trois matrices dans \mathbf{L} est nul et il vient

$$\exp(M) \times \exp(N) = (I_3 + M + \frac{1}{2}M^2)(I_3 + N + \frac{1}{2}N^2) = I_3 + M + N + MN + \frac{1}{2}(M^2 + N^2)$$

et

$$\exp(M \star N) = I_3 + M + N + \frac{1}{2}[M, N] + \frac{1}{2}(M + N + \frac{1}{2}[M, N])^2 = I_3 + M + N + \frac{1}{2}[M, N] + \frac{1}{2}(M + N)^2$$
 et donc, puisque $(M + N)^2 = M^2 + N^2 + MN + NM$ et $[M, N] = MN - NM$,

 $\exp(M) \times \exp(N) = \exp(M \star N).$

4. Soit M et N dans \mathbf{L} , d'après ce qui précède et par associativité, le membre de droite est égal à

$$\exp((M+N+\frac{1}{2}[M,N])\star(-M-N+\frac{1}{2}[M,N]))$$

soit, puisque le produit de trois matrices dans \mathbf{L} est nul, $\exp([M,N] + \frac{1}{2}[M+N,-M-N])$, i.e. puisqu'une matrice commute avec son opposé, $\exp([M,N]) = \exp(M)\exp(N)\exp(-M)\exp(-N)$.

5. On a remarqué en question 2a que \mathbf{L} est stable par addition et multiplication. Il en résulte que \mathbf{H} l'est par multiplication. Étant formé de matrices triangulaires de diagonale unitaire, c'est une partie de $\mathrm{SL}_3(\mathbf{R})$ et il contient $I_3+M_{0,0,0}$, i.e. I_3 . Enfin pour M dans \mathbf{L} , on a $M^2\in\mathbf{L}$ et $(I_3+M)(I_3-M+M^2)=I_3-M^3=I_3$ et donc l'inverse de I_3+M appartient à \mathbf{H} . Il en résulte que \mathbf{H} est un sous-groupe de $\mathrm{SL}_3(\mathbf{R})$. Remarquons que \mathbf{L} , et donc aussi \mathbf{H} , est en bijection ensembliste avec \mathbf{R}^3 par $(p,q,r)\mapsto M_{p,q,r}$. Les questions 3 et 1 montrent d'une part que exp est un homomorphisme et que pour (p,q,r) et (u,v,w) dans \mathbf{R}^3 , on a $\exp(M_{p,q,r})=I_3+M_{u,v,w}\Longleftrightarrow (p,q,r)=(u,v,w-\frac{1}{2}uv)$, de sorte que exp est bijectif, i.e. $\mathbf{exp}\in\mathrm{Isom}((\mathbf{L},\star),(\mathbf{H},\times))$.

PARTIE B

6a. Pour t dans [0;1] on pose $f(t) = [\exp(tA), B] - t[A, B] \exp(tA)$, de sorte que f(0) = 0 et f est de classe C^1 , à valeurs dans $\mathcal{M}_d(\mathbf{R})$, et $f(t) = u(\exp(tA)) - tv(\exp(tA))$ où u et v sont les applications linéaires sur $\mathcal{M}_d(\mathbf{R})$ données par u(M) = MB - BM et v(M) = [A, B]M. Comme par ailleurs la dérivée de $t \mapsto \exp(tA)$ est $t \mapsto A \exp(tA)$, il en résulte, pour t dans [0;1] et puisque A commute avec [A, B],

$$f'(t) = u(A\exp(tA)) - v(\exp(tA)) - tv(A\exp(tA)) = [A\exp(tA), B] - [A, B]\exp(tA) - t[A, B]A\exp(tA)$$
$$= A\exp(tA)B - AB\exp(tA) - tA[A, B]\exp(A) = Af(t)$$

et donc, d'après le théorème de CAUCHY-LIPSCHITZ linéaire pour le problème de CAUCHY $y' = \varphi(y)$ et y(0) = 0, avec $\varphi \in \operatorname{End}(\mathcal{M}_d(\mathbf{R}))$ donné par $\varphi(M) = AM$, f est nul et en particulier pour t = 1 il vient $[\exp(A), B] = [A, B] \exp(A)$.

Remarque : on peut également démontrer par récurrence, pour n dans \mathbf{N}^* , $[A^n,B]=n[A,B]A^{n-1}$ en écrivant $[A^n,B]=[A^{n-1},B]A+A^{n-1}[A,B]$ et en utilisant le fait que [A,B] commute à A et donc aussi à A^{n-1} . La conclusion s'ensuit en sommant, après division par n!, et en utilisant la continuité de la multiplication matricielle.

6b. Soit g la fonction donnée par l'énoncé. C'est une fonction de classe C^1 sur \mathbf{R} et, d'après la question précédente et par dérivation d'un produit (non commutatif), il vient pour t dans \mathbf{R} puisque tA et B commutent à [tA, B], i.e. à t[A, B],

$$g'(t) = Ag(t) + \exp(tA)B \exp(tB) = (A+B)g(t) + [\exp(tA), B] \exp(tB) = (A+B+t[A, B])g(t)$$

i.e. la fonction proposée est solution sur ${\bf R}$ de y' = (A+B+t[A,B])y.

6c. Plus précisément la fonction précédente est solution du problème de CAUCHY posé pour l'équation différentielle linéaire y'(t) = u(t)(y) et $y(0) = I_d$ avec $u \in C^0(\mathbf{R}, \operatorname{End}(\mathcal{M}_d(\mathbf{R})))$ donné par u(t)(y) = (A + B + t[A, B])y, la multiplication à gauche dans $\mathcal{M}_d(\mathbf{R})$ étant linéaire. Or, par hypothèse, [A, B] commute avec A et B donc avec A + B et donc pour tout t réel on a

$$\exp(t(A+B) + \frac{1}{2}t^2[A,B]) = \exp(t(A+B))\exp(\frac{1}{2}t^2[A,B])$$

et donc cette expression définit une fonction de classe C^1 , valant I_d en 0 et de dérivée donnée par $(A+B)\exp(t(A+B))\exp(\frac{1}{2}t^2[A,B]) + t\exp(t(A+B))[A,B]\exp(\frac{1}{2}t^2[A,B])$. Commute

à A+B, il commute à ses puissances et donc, par passage à la limite, à $\exp(t(A+B))$. On en déduit que l'expression introduite est solution du même problème de CAUCHY linéaire et ainsi il vient, pour tout t réel, $\exp(tA)\exp(tB)=\exp(t(A+B)+\frac{1}{2}t^2[A,B])$. En particulier, pour t=1, il vient $\exp(A)\exp(B)=\exp(A+B+\frac{1}{2}[A,B])$.

- 7a. Par bilinéarité de $(M,N)\mapsto [M,N], [A,B]$ commute à tout élément de $\mathcal L$ puisqu'il commute à A,B et lui-même. Également par linéarité l'image de $M\mapsto [M,A]$ est incluse dans $\mathbf R[A,B]$ car les images de A et [A,B] sont nulles et [B,A]=-[A,B]. $Mutatis\ mutandis\ il$ en va de même pour l'image de $M\mapsto [M,B]$ et donc aussi de $(M,N)\mapsto [M,N]$. Soit donc M et N dans $\mathcal L$, on a $[M,N]\in \mathbf R[A,B]$ et donc [M,N] commute à M et N.
- 7b. On déduit des deux questions précédentes que pour tout M et N dans \mathcal{L} , on a $\exp(M) \exp(N) = \exp(M+N+\frac{1}{2}[M,N])$. En particulier pour N=-M, [M,N]=0 et on en déduit que G est inclus dans $\mathrm{GL}_d(\mathbf{R})$ et stable par passage à l'inverse. Comme \mathcal{L} est un espace vectoriel, il est non vide et il en va de même pour G et enfin les arguments de la question précédente montrent que \mathcal{L} est stable par $(M,N)\mapsto [M,N]$ et donc aussi par $(M,N)\mapsto M+N+\frac{1}{2}[M,N]$ puisqu'on a affaire à un espace vectoriel. Ainsi, d'après la question 6c, G est stable par multiplication et est donc un sous-groupe de $\mathrm{GL}_d(\mathbf{R})$. En particulier G est un groupe.

On note $A_0 = M_{1,0,0}$, $B_0 = M_{0,1,0}$ et $C_0 = M_{0,0,1}$. La famille (A_0, B_0, C_0) est libre puisqu'extraite de la base canonique de $\mathcal{M}_3(\mathbf{R})$ et est donc une base de \mathbf{L} . Un élément de \mathbf{H} s'écrit donc de façon unique sous la forme $I_3 + uA_0 + vB_0 + wC_0$ avec $(u, v, w) \in \mathbf{R}^3$. Les questions 1 et 5 montrent que Φ est bien défini et permettent de l'expliciter : pour (u, v, w) dans \mathbf{R}^3 on a

$$I_3 + uA_0 + vB_0 + wC_0 = \exp(M_{p,q,r}) \iff (p,q,r) = (u,v,w - \frac{1}{2}uv)$$

et donc $\Phi(I_3 + uA_0 + vB_0 + wC_0) = \exp(uA + vB + (w - \frac{1}{2}uv)[A, B])$. Soit maintenant (u_1, v_1, w_1) et (u_2, v_2, w_2) dans \mathbf{R}^3 , il vient

 $(I_3+u_1A_0+v_1B_0+w_1C_0)(I_3+u_2A_0+v_2B_0+w_2C_0) = I_3+(u_1+u_2)A_0+(v_1+v_2)B_0+(w_1+w_2+u_1v_2)C_0$ et, en utilisant la question 6c,

$$\begin{split} &\Phi(I_3 + u_1 A_0 + v_1 B_0 + w_1 C_0) \Phi(I_3 + u_2 A_0 + v_2 B_0 + w_2 C_0) = \\ &\exp((u_1 A + v_1 B + (w_1 - \frac{1}{2} u_1 v_1)[A, B]) + (u_2 A + v_2 B + (w_2 - \frac{1}{2} u_2 v_2)[A, B]) + \frac{1}{2} (u_1 v_2 - v_1 u_2)[A, B]) \\ &\operatorname{car} \end{split}$$

$$[u_1A + v_1B + (w_1 - \frac{1}{2}u_1v_1)[A, B], u_2A + v_2B + (w_2 - \frac{1}{2}u_2v_2)[A, B]] = (u_1v_2 - v_1u_2)[A, B]$$

par bilinéarité du crochet et puisque [A, B] commute à A et B, que toute matrice commute à elle-même et qu'on a [B, A] = -[A, B]. Or on a

$$w_1 + w_2 + u_1 v_2 - \frac{1}{2}(u_1 + v_1)(u_2 + v_2) = w_1 - \frac{1}{2}u_1 v_1 + w_2 - \frac{1}{2}u_2 v_2 + \frac{1}{2}(u_1 v_2 - v_1 u_2)$$

et donc $\Phi(I_3 + u_1A_0 + v_1B_0 + w_1C_0)\Phi(I_3 + u_2A_0 + v_2B_0 + w_2C_0) = \Phi((I_3 + u_1A_0 + v_1B_0 + w_1C_0)(I_3 + u_2A_0 + v_2B_0 + w_2C_0))$. Par conséquent Φ est un morphisme de groupes.

Remarque : pour d=3, $A=A_0$ et $B=B_0$, on a $[A,B]=C_0$ et donc [A,B] commute à A et B, de sorte qu'on a alors $\mathcal{L}=\mathbf{L}$, $G=\mathbf{H}$ et $pA+qB+r[A,B]=M_{p,q,r}$. Ainsi Φ est défini par $\Phi(\exp(pA_0+qB_0+r[A_0,B_0]))=\exp(pA+qB+r[A,B])$. Par ailleurs l'application de \mathbf{L} dans \mathcal{L} donnée par $pA_0+qB_0+r[A_0,B_0]\mapsto pA+qB+r[A,B]$ est un morphisme d'algèbres de Lie, i.e. une application linéaire compatible au crochet. En effet dans les deux cas le crochet est donné par [pA+qB+r[A,B],p'A+q'B+r'[A,B]]=(pq'-qp')[A,B].

PARTIE C

8a. Pour n dans \mathbf{N}^* avec $n \geq k$, on a $\frac{n!}{(n-k)! n^k} = \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right)$, avec un produit égal à 1 si $k < \infty$

2. Chacun des termes du produit est de la forme 1 + o(1) et est compris entre 0 et 1, donc par compatibilité de la limite au produit et puisqu'on a affaire à un produit de termes positifs et inférieurs

à
$$1 \ 0 \le \frac{n!}{(n-k)! \, n^k} \le 1 \text{ et } \lim \frac{n!}{(n-k)! \, n^k} = 1.$$

Puisque I_d commute à toute matrice dans $\mathcal{M}_d(\mathbf{R})$, la formule du binôme de NEWTON donne $(I_d +$ $(\frac{1}{n}D_n)^n = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} D_n^k$ et donc

$$\left(I_d + \frac{1}{n}D_n\right)^n - \sum_{k=0}^n \frac{1}{k!}D_n^k = \sum_{k=0}^n \left(1 - \frac{n!}{(n-k)!n^k}\right) \frac{1}{k!}D_n^k$$

de sorte que, par inégalité triangulaire, sous-multiplicativité de la norme et positivité des coefficients d'après ce qui précède,

$$\left\| \left(I_d + \frac{1}{n} D_n \right)^n - \sum_{k=0}^n \frac{1}{k!} D_n^k \right\| \le \sum_{k=0}^n \left(1 - \frac{n!}{(n-k)! \, n^k} \right) \frac{\lambda^k}{k!} .$$

Soit alors ε dans \mathbf{R}_{+}^{*} . Par convergence de la série exponentielle, on dispose de N dans N tel qu'on ait $\sum_{k} \frac{\lambda^k}{k!} \leq \varepsilon$. Or, par majoration par 1 des coefficients, il vient par positivité pour n > N

$$\left\| \left(I_d + \frac{1}{n} D_n \right)^n - \sum_{k=0}^n \frac{1}{k!} D_n^k \right\| \le \sum_{k=0}^N \left(1 - \frac{n!}{(n-k)! \, n^k} \right) \frac{\lambda^k}{k!} + \sum_{n>N} \frac{\lambda^k}{k!}$$

et donc le membre de droite est somme d'une somme de limite nulle, par linéarité de la limite, et d'un terme positif inférieur à ε . On dispose donc de N' supérieur à N tel que, pour $n \geq N'$, on ait

$$\left\| \left(I_d + \frac{1}{n} D_n \right)^n - \sum_{k=0}^n \frac{1}{k!} D_n^k \right\| \le 2\varepsilon$$

i.e.
$$\lim \left(I_d + \frac{1}{n}D_n\right)^n - \sum_{k=0}^n \frac{1}{k!}D_n^k = 0.$$

8b. On a, par changement d'indice dans la seconde somme, pour $k \geq 1$ et $n \geq 0$,

$$D_n^k - D^k = \sum_{j=1}^k D_n^j D^{k-j} - \sum_{j=0}^{k-1} D_n^j D^{k-j} = \sum_{j=1}^k (D_n^j D^{k-j} - D_n^{j-1} D^{k+1-j}) = \sum_{j=1}^k D_n^{j-1} (D_n - D) D^{k+1-j}$$

et donc par inégalité triangulaire et sous-multiplicativité de la norme

$$||D_n^k - D^k|| \le \sum_{i=1}^k ||D_n||^{j-1} ||D_n - D|| ||D||^{k+1-j}$$
.

Or la norme est 1-Lipschitzienne donc continue et ainsi par passage à la limite $||D|| \le \lambda$. Il en résulte $\left| \left| \left| D_n^k - D^k \right| \right| \le k \lambda^{k-1} \, ||D_n - D||$.

$$||D_n^k - D^k|| \le k\lambda^{k-1} ||D_n - D||.$$

8c. Pour $n \geq 0$, on a

$$\sum_{k=0}^{n} \frac{1}{k!} D_n^k - \sum_{k=0}^{n} \frac{1}{k!} D^k = \sum_{k=1}^{n} \frac{1}{k!} (D_n^k - D^k)$$

et donc, par inégalité triangulaire et la question précédente, ainsi que par positivité des termes et convergence de (D_n) vers D

$$\left\| \sum_{k=0}^{n} \frac{1}{k!} D_n^k - \sum_{k=0}^{n} \frac{1}{k!} D^k \right\| \le \sum_{k=0}^{n-1} \frac{\lambda^k}{k!} \|D_n - D\| \le e^{\lambda} \|D_n - D\| = o(1).$$

Par encadrement il vient $\lim \left(\sum_{k=0}^n \frac{1}{k!} D_n^k - \sum_{k=0}^n \frac{1}{k!} D^k\right) = 0$. Il en résulte que $\left(I_d + \frac{1}{n} D_n\right)^n - \exp(D)$ est somme de trois termes tendant vers 0, i.e. celui de la question 8a, celui que l'on vient d'exhiber et enfin, par convergence de la série exponentielle pour D, $\sum_{k=0}^n \frac{1}{k!} D^k - \exp(D)$. Il en résulte

$$\left[\lim \left(I_d + \frac{1}{n}D_n\right)^n = \exp(D).\right]$$

9a. Par convergence absolue de la série exponentielle et sous-multiplicativité de la norme, il vient

$$\|\exp(D) - I_d - D\| \le \sum_{n=2}^{+\infty} \frac{1}{n!} \|D\|^n \le (e-1) \|D\|^2$$

puisque $||D|| \le 1$. Ainsi $pour \mu = e - 1$, on a $\mu > 0$ et $||exp(D) - I_d - D|| \le \mu ||D||^2$.

9b. D'après la question précédente pour n supérieur à $\|A\|$ et $\|B\|$, on dispose de A_n et B_n tels que $\exp(\frac{A}{n}) = I_d + \frac{A}{n} + A_n$, $\exp(\frac{B}{n}) = I_d + \frac{B}{n} + B_n$, $\|A_n\| \le \frac{\mu}{n^2} \|A\|^2$ et $\|B_n\| \le \frac{\mu}{n^2} \|B\|^2$, ces deux majorations utilisant la sous-multiplicativité de la norme. Et donc, en posant $C_n = \frac{1}{n^2}AB + A_n \exp(\frac{B}{n}) + \exp(\frac{A}{n})B_n$, il vient $\exp(\frac{A}{n}) \exp(\frac{B}{n}) = I_d + \frac{A}{n} + \frac{B}{n} + C_n$ avec, par sous-multiplicativité de la norme et inégalité triangulaire,

$$||C_n|| \le \frac{||A|| ||B||}{n^2} + \frac{\mu}{n^2} ||A||^2 \left(1 + \frac{||B||}{n} + \frac{\mu}{n^2} ||B||^2\right) \frac{\mu}{n^2} ||B||^2 \left(1 + \frac{||A||}{n} + \frac{\mu}{n^2} ||A||^2\right)$$

et donc, en posant $\nu = \|A\| \|B\| + \mu(\|A\|^2 + \|B\|^2 + \|A\| \|B\| (\|A\| + \|B\|) + 2\mu \|A\|^2 \|B\|^2),$ $\exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right) = I_d + \frac{A}{n} + \frac{B}{n} + C_n, \|C_n\| \le \frac{\nu}{n^2} \text{ et } \nu > 0.$

10. On pose, avec les notations précédentes, $D_n = A + B + nC_n$. D'après la question précédente, on a $\|C_n\| = O\left(n^{-2}\right)$, donc aussi $D_n = A + B + o(1)$, i.e. $\lim D_n = A + B$. Il résulte alors de la question 8c, jointe à la définition de C_n , $\lim \left(\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right)\right)^n = \exp(A + B)$.

PARTIE D

11a. Soit (u, v) dans E(T). Pour tout t dans [0; T] l'application $M \mapsto u(t)MM_{1,0,0} + v(t)MM_{0,1,0}$ est linéaire sur $\mathcal{M}_3(\mathbf{R})$ par bilinéarité du produit matriciel et cette application linéaire dépend continûment de t car u et v sont continues et continuité des applications bilinéaires en dimension finie. Il en résulte qu'un chemin de Carnot contrôlé par (u, v) est une solution d'un problème de Cauchy associé à une équation différentielle linéaire à coefficients continus sur [0; T]. D'après le théorème de Cauchy-Lipschitz linéaire, [un tel chemin de Carnot existe et est unique.]

11b. On raisonne par analyse-synthèse. Soit p, q et r trois fonctions dans $C^1([0;T],\mathbf{R})$. D'après la question 1, on a $\exp(M_{p,q,r}) = I_3 + M_{p,q,r+\frac{1}{2}pq}$ et donc, en posant $\gamma = \exp(M_{p,q,r})$, γ est une fonction de classe C^1 sur [0;T] et à valeurs dans $\mathcal{M}_3(\mathbf{R})$ de dérivée $M_{p',q',r'+\frac{1}{2}(p'q+q'p)}$. Ainsi γ est un chemin de CARNOT contrôlé par (u,v) si et seulement si (p,q,r) est solution du problème de CAUCHY

$$\begin{cases} p' = u \\ q' = v \\ r' + \frac{pq' + p'q}{2} = vp \end{cases} \begin{cases} p(0) = 0 \\ q(0) = 0 \\ r(0) = 0. \end{cases}$$

Par continuité de u et v, on dispose de U et V leurs primitives respectives s'annulant en 0, et le problème de Cauchy se récrit $p=U, \ q=V$ et $r'=\frac{vp-qu}{2}$ et r(0)=0. Ainsi $p=U, \ q=V$ et r la primitive de la fonction continue $\frac{Uv-uV}{2}$ s'annulant en 0, conviennent, i.e. $I_3+M_{p,q,r}$ est un chemin de Carnot contrôlé par (u,v). Par unicité de ce chemin, on en déduit

$$\forall t \in [0; T], \ \gamma(t) \in \mathbf{H}, \ p(t) = \int_{[0; t]} u, \ q(t) = \int_{[0; t]} v \ \text{et} \ r(t) = \int_0^t \int_0^x \frac{u(y)v(x) - u(x)v(y)}{2} \, \mathrm{d}y \, \mathrm{d}x.$$

12a. D'après la question précédente on a, pour $t \in [0;T]$, $p(t) = \frac{\cos(\theta - \varphi t) - \cos(\theta)}{\varphi}$ et $q(t) = \frac{\sin(\theta) - \sin(\theta - \varphi t)}{\varphi}$. Donc, puisque $\cos^2 + \sin^2 = 1$ et $\cos(\theta)\cos(\theta - \varphi t) + \sin(\theta)\sin(\theta - \varphi t) = \cos(\varphi t)$, r est la primitive nulle en 0 de la fonction donnée par $\frac{1 - \cos(\varphi t)}{2\varphi}$, ce qui est bien la formule $r(t) = \frac{t\varphi - \sin(t\varphi)}{2\varphi^2}$.

Remarque : on peut écrire $p(t) = t \sin(\theta - \frac{\varphi t}{2}) \operatorname{sinc}(\frac{\varphi t}{2})$ et $q(t) = t \cos(\theta - \frac{\varphi t}{2}) \operatorname{sinc}(\frac{\varphi t}{2})$ où sinc est le prolongement par continuité en 0 de la fonction donnée par $\operatorname{sin}(x) = \frac{\sin(x)}{x}$ ou encore $\operatorname{sin}(x) = \int_0^1 \cos(xt) \, dt$. Sous cette forme sinc est de classe C^∞ par théorème de dérivation des intégrales à paramètres puisqu'on intègre sur un segment une fonction de classe C^∞ en les deux paramètres, donc dont toutes les dérivées par rapport à x sont continues en t et bornées, donc majorées en valeur absolue par une fonction constante, et donc par une fonction continue et intégrable sur [0;1]. La formule de Taylor-Laplace, dite avec reste intégral, permet également d'écrire r sans fraction :

$$p(t) = t \sin\left(\theta - \frac{\varphi t}{2}\right) \operatorname{sinc}\left(\frac{\varphi t}{2}\right), \ q(t) = t \cos\left(\theta - \frac{\varphi t}{2}\right) \operatorname{sinc}\left(\frac{\varphi t}{2}\right), \ r(t) = \frac{t^2}{2} \int_0^1 (1 - x) \sin(xt\varphi) \, \mathrm{d}x.$$

- **12b.** De même $p(t) = t \sin(\theta)$ et $q(t) = t \cos(\theta)$, de sorte que r est la primitive nulle en 0 de 0, i.e. r = 0. Remarque : les formules précédentes sont donc valides pour tout φ .
- 13. En tant que rapports de fonctions de classe C^{∞} , f et g le sont partout où le dénominateur ne s'annule pas, ce qui est le cas sur $]0;2\pi]$. D'après la formule de Taylor-Young, on a $\cos(t)=1-\frac{1}{2}t^2+O_0\left(t^2\right)$ et $\sin(t)=t-\frac{1}{6}t^3+O_0\left(t^3\right)$ et f et g sont prolongeables par continuité en 0 par 1 et 0 respectivement. Pour s dans $]0;2\pi]$, il vient en utilisant la formule pour l'arc moitié et le théorème de Leibniz-Newton, dit théorème fondamental du calcul différentiel et intégral,

$$f(s) = \frac{4}{s^2} \sin^2\left(\frac{s}{2}\right) = \operatorname{sinc}^2\left(\frac{s}{2}\right) = \left(\int_0^1 \cos\left(\frac{s}{2}u\right) du\right)^2.$$

Comme la fonction cos est strictement décroissante sur $[0;\pi]$, pour $0 < u \le 1$ et $0 \le s < s' \le 2\pi$, on a $1 \ge \cos(\frac{s}{2}u) > \cos(\frac{s'}{2}u) \ge -1$ et donc par croissance de l'intégrale et continuité des intégrandes, l'intégrale est une fonction strictement décroissante de s sur $]0;\pi]$, valant 1 en 0 et 0 en 2π . Il en va donc

de même de son carré, par croissance stricte de la fonction carré sur [0;1], i.e. f est strictement décroissante et donc, en vertu du théorème de la bijection, f est une bijection continue de $[0;2\pi]$ sur [0;1]. En utilisant les formules pour l'arc moitié et le théorème de LEIBNIZ-NEWTON, la fonction g admet une dérivée sur $[0;2\pi]$ donnée par

$$g'(s) = \frac{2\sin(s) - (1 + \cos(s))s}{2s^3} = \frac{\cos(\frac{s}{2})}{s^3} \left(2\sin\left(\frac{s}{2}\right) - s\cos\left(\frac{s}{2}\right)\right) = \frac{\cos(\frac{s}{2})}{s^2} \int_0^1 \left(\cos\left(\frac{st}{2}\right) - \cos\left(\frac{s}{2}\right)\right) dt.$$

Or, par décroissance stricte de la fonction cos sur $[0;\pi]$ et continuité de l'intégrande, l'intégrale est strictement positive et donc g'(s) est du signe de $\cos(\frac{s}{2})$. Il en résulte que g est strictement croissante sur $[0;\pi]$, donc aussi sur $[0;\pi]$ par continuité, et strictement décroissante sur $[\pi;2\pi]$. En particulier g atteint son maximum en π .

14. On prolonge f et g à $[-2\pi; 2\pi]$ par parité et imparité respectivement. On note \tilde{f} et \tilde{g} leurs prolongements respectifs. On a, d'après les questions 12 et 13,

$$(p,q,r) \in B(1) \iff \exists (\theta,\varphi) \in [-\pi;\pi] \times [-2\pi;2\pi] \begin{cases} p = \sin\left(\theta - \frac{\varphi}{2}\right) \operatorname{sinc}\left(\frac{\varphi}{2}\right), \\ q = \cos\left(\theta - \frac{\varphi}{2}\right) \operatorname{sinc}\left(\frac{\varphi}{2}\right), \\ r = \tilde{g}(\varphi) \end{cases} \\ \iff \exists (\theta,\varphi) \in [-\pi;\pi] \times [-2\pi;2\pi] \quad q + ip = e^{i\theta}e^{-i\varphi/2}\operatorname{sinc}\left(\frac{\varphi}{2}\right) \text{ et } r = \tilde{g}(\varphi)$$

et donc, puisque $\theta \mapsto e^{i\theta}$ est une surjection de $[-\pi; \pi]$ sur **U**, groupe des nombres complexes de module 1, il vient par positivité de sinc sur $[-\pi; \pi]$

$$(p,q,r) \in B(1) \iff \exists \varphi \left[-2\pi; 2\pi \right] \quad |q+ip| = \operatorname{sinc}\left(\frac{\varphi}{2}\right) \text{ et } r = \tilde{g}(\varphi)$$

ou encore, toujours par positivité de sinc,

$$(p,q,r) \in B(1) \iff \exists \varphi [-2\pi; 2\pi] \quad p^2 + q^2 = \tilde{f}(\varphi) \text{ et } r = \tilde{g}(\varphi).$$

Par inégalité de concavité, g est une fonction positive sur $[0;2\pi]$ et donc $\tilde{g}(\varphi)$ est du signe de φ sur $[-2\pi;2\pi]$, par imparité de \tilde{g} . Par conséquent, puisque f est une bijection de $[0;2\pi]$ dans [0;1], il vient

$$((p,q,r) \in B(1) \text{ et } r \geq 0) \Longrightarrow \exists \varphi \, [0;2\pi] \quad p^2 + q^2 = f(\varphi) \text{ et } r = g \circ f^{-1}(p^2 + q^2))$$

et donc en particulier $r = g \circ f^{-1}(p^2 + q^2)$. Réciproquement, puisque f est une bijection de $[0; 2\pi]$ sur [0; 1], on a $\exists \varphi [0; 2\pi] p^2 + q^2 = f(\varphi) \iff p^2 + q^2 \in [0; 1]$ et donc

$$\forall (p,q,r) \in \mathbf{R}^3 \ ((p,q,r) \in B(1) \ \text{et} \ r \ge 0) \iff (p^2 + q^2 \in [0;1] \ \text{et} \ r = g \circ f^{-1}(p^2 + q^2)).$$

15. La réponse à la question précédente a permis d'obtenir, pour $(p,q,r) \in \mathbf{R}^3$

$$(p,q,r) \in B(1) \iff \exists \varphi [-2\pi; 2\pi] \quad p^2 + q^2 = \tilde{f}(\varphi) \text{ et } r = \tilde{g}(\varphi)$$

et on en déduit par imaprité de \tilde{g} et parité de sinc, $(p,q,r) \in B(1) \iff (p,q,|r|) \in B(1)$. Il résulte alors de la question précédente $(p,q,r) \in B(1) \implies p^2 + q^2 + |r| = (\mathrm{Id} + g \circ f^{-1})(p^2 + q^2)$. D'après le théorème de la bijection f^{-1} est continue de [0;1] dans $[0;2\pi]$. La continuité de g et de l'identité, jointe aux théorèmes de WEIERSTRASS et de BOLZANO (dit des valeurs intermédiaires), montre que

l'image de [0;1] par $\mathrm{Id} + g \circ f^{-1}$ est un segment de \mathbf{R} . Comme g est à valeurs positives et ne s'annule qu'en $0, g \circ f^{-1}$ est à valeurs positives et ne s'annule qu'en 1 et donc $\mathrm{Id} + g \circ f^{-1}$ ne s'annule pas sur [0;1]. Son image est alors un segment inclus dans \mathbf{R}_+^* , i.e. de la forme [a;b] avec $0 < a \le b$. En posant $c_1 = \max(a^{-1},b)$, il vient, pour (p,q,r) dans $B(1), c_1^{-1} \le p^2 + q^2 + |r| \le c_1$ avec $c_1 > 0$.

16a. Soit (p,q,r) dans $\mathbf{R}^3\setminus\{(0,0,0)\}$ et λ dans \mathbf{R}^*_+ . D'après la caractérisation donnée à la question précédente, $(\lambda p, laq, \lambda^2 r)$ appartient à B(1) si et seulement si $\lambda^2(p^2+q^2)\leq 1$ et $\lambda^2|r|=g\circ f^{-1}(\lambda^2(p^2+q^2))$. Si p=q=0, alors r est non nul et la condition s'écrit $\lambda^2|r|=g(2\pi)=\frac{1}{4\pi}$ et admet donc une unique solution i.e. $\lambda=\frac{1}{2\sqrt{\pi|r|}}$. Sinon, en posant $t=\lambda^2(p^2+q^2)$, la condition s'écrit $t\leq 1$ et $|r|t-(p^2+q^2)g\circ f^{-1}(t)$, i.e. $f^{-1}(t)$ est un zéro de $|r|f-(p^2+q^2)g$. Cette dernière expression vaut $-\frac{p^2+q^2}{4\pi}$ si t=0, donc n'est pas nul dans le cas étudié. Puisque f ne s'annule qu'en $f^{-1}(0)$, la condition se récrit donc $0< t\leq 1$ et $\frac{g}{f}$ prend la valeur $\frac{|r|}{p^2+q^2}$ en $f^{-1}(t)$. Comme f est une bijection, la condition est équivalente à $\lambda=\sqrt{\frac{f(\alpha)}{p^2+q^2}}$ avec α un antécédent dans $[0;2\pi[$ de $\frac{|r|}{p^2+q^2}$ par $\frac{g}{f}$. Tout revient donc à montrer que $\frac{g}{f}$ est bijective de $[0;2\pi[$ dans \mathbf{R}^*_+ . Notons h la fonction sur $[0;2\pi[$ donnée par $h(s)=s-\sin(s)$, de sorte que, sur $]0;2\pi[$, $\frac{g}{f}=\frac{h'}{h}$. On en déduit que $\frac{g}{f}$ est strictement décroissante sur $[0;2\pi[$ si et seulement si elle l'est sur $]0;2\pi[$ par continuité, si et seulement si h est strictement log-concave (par exemple si $hh''<(h')^2$) sur $]0;2\pi[$. Or on a, pour t dans $]0;2\pi[$,

$$(t - \sin(t))\sin(t) < (1 - \cos(t))^2 \Longleftrightarrow t\sin(t) < 2(1 - \cos(t)) \Longleftrightarrow \frac{t}{2} < \tan\left(\frac{t}{2}\right)$$

et cette dernière inégalité résulte de la stricte convexité de tan sur]0; π [. D'où l'unicité de λ dans \mathbf{R}_{+}^{*} tel que $(\lambda p, \lambda q, \lambda^{2}r) \in B(1)$.

16b. Soit A dans $\mathbf{H} \setminus \{I_3\}$. D'après la question 5, on dispose de (p,q,r) dans $\mathbf{R}^3 \setminus \{(0,0,0)\}$ tel que $A = \exp(M_{p,q,r})$ et donc aussi, d'après la question précédente, de λ dans \mathbf{R}_+^* tel que $\exp(M_{\lambda p,\lambda q,\lambda^2 r}) \in B(1)$ et donc aussi de (θ,φ_1) dans $[-\pi;\pi] \times [-2\pi;2\pi]$ tel que

$$\lambda p = \sin\left(\theta - \frac{\varphi_1}{2}\right) \operatorname{sinc}\left(\frac{\varphi_1}{2}\right), \ \lambda q = \cos\left(\theta - \frac{\varphi_1}{2}\right) \operatorname{sinc}\left(\frac{\varphi_1}{2}\right), \ \lambda^2 r = \frac{1}{2} \int_0^1 (1-x) \sin(x\varphi_1) \,\mathrm{d}x.$$

On pose alors $T=\lambda^{-1}$, de sorte que T est un réel strictement positif, et $\varphi=\lambda\varphi_1$, de sorte que $\varphi T=\varphi_1$. Il vient alors

$$p = T \sin\left(\theta - \frac{\varphi T}{2}\right) \operatorname{sinc}\left(\frac{\varphi T}{2}\right), \ q = T \cos\left(\theta - \frac{\varphi T}{2}\right) \operatorname{sinc}\left(\frac{\varphi T}{2}\right), \ r = \frac{T^2}{2} \int_0^1 (1 - x) \sin(xT\varphi) \, \mathrm{d}x$$

et donc, d'après les formules de la question 12, $A = \gamma(T)$ où γ est le chemin de Carnot contrôlé par $(u_{\theta,\varphi},v_{\theta,\varphi})$ dans E(T) et donc A est l'extrémité d'un tel chemin de Carnot.

16c. Soit (p,q,r) dans $\mathbf{R}^3 \setminus \{(0,0,0)\}$ et $A = \exp(M_{p,q,r})$. Dans la question précédente le triplet (p,q,r) associé à A est déterminé de façon unique, d'après la question 5, et si $A = \gamma(T)$ avec γ un chemin de CARNOT contrôlé par $(u_{\theta,\varphi},v_{\theta,\varphi})$ dans E(T), alors les formules précédentes montrent que $\left(\frac{1}{T}p,\frac{1}{T^2}r\right)$ appartient à B(1). On en déduit que T est uniquement déterminé par A et qu'on a,

d'après la question 15, $c_1^{-1} \le \frac{p^2 + q^2 + |r|}{T^2} \le c_1$ et donc, en posant $c_2 = \sqrt{c_1}$, il vient

$$c_2 > 0$$
 et $c_2^{-1} \sqrt{p^2 + q^2 + |r|} \le T(\exp(M_{p,q,r})) \le c_2 \sqrt{p^2 + q^2 + |r|}$.